![]() |
|
Thread Tools | Display Modes |
|
#1
|
|||
|
|||
![]()
THE
SCALEARPRODUCT!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! POSTULATES!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!: 1. THE SCALEARPRODUCT ARE FUNCTION: VECTOR X VECTOR - SCALEAR: U X V - U,V!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!! 2. THE SCALEARPRODUCT ARE EULIDEAN GEOMETRIC!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ""EXPLAINATION": IF I DRAW THE TWO VECTORS, THEN THE SACALEAR PRODUCT ARE DETERMINED FROM THE FIGURE DRAWN. THAT IS: THE SCALEAR PRODUCT ARE FUNCTION OF |U|,|V| AND THE ANGLE BETWEEN THE TWO VECTORS. THE ANGLE BETWWEN TWO VECTORS ARE THE MINIUM ANGLE BETWEEN ANY TWO LINES CONTAINING EACH ONE OF THE VECTORS. THE 0VECTOR IS CONTAINED IN ANY LINE, SO THE ANGLE BETWWEN ANY VECTOR AND THE 0VECTOR IS 0. THE SYMBOLE OF ANGLE ARE v." 3. THE SCALEARPRODUCT ARE LINEAR IN BOTH VECTORVARIABLES!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!! 4. THE SCALEARPRODUCT OF U,U=|U|^2!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!! LET THE TWO VECTORS BEE U AND V IF ONE VECTOR OR BOTH ARE THE 0VECTOR, THE SCALEAR PRODUCT ARE 0 FROM LINEARITY: 0=0U,V=0U,V=0,V THE SAME FOR U. LET NO ONE OF THE TWO VECTORS BEE THE 0VECTOR. GIVEN THE UNIT VECTOR IN THE U DERECTION: e U=|U|e IF U AND V ARE PARALLELL: V=u|V|e u ARE +1 or -1. THEN: U,V = |U|e,u|V|e = u|U||V|e,e = u|U||V||e|^2 = u|U||V| IF U AND V ARE NOT PARALLELL THEN THEY LIE IN ONE DETERMINED PLANE. LET f BEE THE UNIT VECTOR PERPENDICULAR TO e IN THAT PLANE LYING ON THE SAME SIDE OF THE ULINE AS V. U=|U|.e. V=|V|.[e.COS(v)+f.SIN(v)] U,V = |U|.e, |V|.[e.COS(v)+f.SIN(v)] =|U||V|.e,e.COS(v)+ |U||V|.e,f.SIN(v) =|U||V|.|e|^2.COS(v)+ |U||V|.e,f.SIN(v) =|U||V|.COS(v)+ |U||V|.e,f.SIN(v) FORMULA THE SCALEARPRODUCT: U,V = |U||V|.COS(v)+ |U||V|.e,f.SIN(v) AS YOU CAN SEE, THIS FORMULA IS 0 IF ONE OR BOTH VECTORS ARE THE 0VECTOR AND IF THEY ARE PARRALLELL THE SECOND TERM VANISCH GIVING only |U||V|.COS(v) AND THAT IS THE SAME AS u|U||V|, BOTH IF u=+1 : COS(v)=1 (THEY LIE ON THE SAME SIDE) AND IF u=-1 : COS(v)=-1 (THEY LIE OOPPOSITE) SO THE FORMULA IS GENERAL: FORMULA THE SCALEARPRODUCT: U,V = |U||V|.COS(v)+ |U||V|.e,f.SIN(v) I MUST PROOF THAT THE e,f = +0 e,f ARE THE SCALEARPRODUCT OF TWO ORTOGONAL UNIT VECTORS, AND POSTULATE 2 SAY THAT IT IS DETERMINED. f,e = e,f FROM POSTULATE 2 PROOF THAT e,f=0: LET TWO VECTORS BEE: W=|W|.[e.COS(vW)+f.SIN(vW)] X=|X|.[e.COS(vX)+f.SIN(vX)] LET |W| AND |X| NOT BEE 0 LET 180 DEGREE vX vW 0 e AND f are here TWO ORTOGONAL UNIT VECTORS. W,X = |W||X| [[|e|^2 COS(vW) COS(vX) + |f|^2 SIN(vW) SIN(vX)] +e,f COS(vW)SIN(vX) + f,e SIN(vW) COS(vX)] =|W||X| COS(vX-vW) +|W||X|.e,f.SIN(vX+vW) BUT FORMULA THE SCALEARPRODUCT: W,X = |W||X|.COS(v)+ |W||X|.e,f.SIN(v) v is here the ANGLE BETWEEN W AND X v = vX - vW W,X = |W||X|.COS(vX - vW)+ |W||X|.e,f.SIN(vX - vW) I NOW HAVE TWO EXPRESSION OF W,X, EAUALITY YELDS: |W||X| COS(vX-vW)+|W||X|.e,f.SIN(vX+vW) =|W||X|.COS(vX - vW)+ |W||X|.e,f.SIN(vX - vW) |W||X|.e,f.SIN(vX+vW) =|W||X|.e,f.SIN(vX - vW) DIVIDIE WITH |W|,|X| e,f.SIN(vX+vW)=e,f.SIN(vX - vW) e,f.[SIN(vX+vW)-SIN(vX - vW)]=0 e,f.[ COS(vW)SIN(vX) + SIN(vW) COS(vX) -( COS(vW)SIN(vX) - SIN(vW) COS(vX))]=0 2.e,f.SIN(vW) COS(vX)=0 LET vW BEE 90 DEGREE: 2.e,f COS(vX)=0 BUT 180 DEGREE vX vW 0 BUT 180 DEGREE vX 90 DEGREE 0 AND COS(vX) ARE NOT 0 IN THAT INTERVALL: e,f=0 Q.E.D. FORMULA THE SCALEARPRODUCT: U,V = |U||V|.COS(v)+ |U||V|.e,f.SIN(v) FORMULA THE SCALEARPRODUCT: U,V = |U||V|.COS(v)+ |U||V|.0.SIN(v) """""""""""""""""""""""""FORMULA THE SCALEARPRODUCT:""""""""""""""""""" """""""""""""""""""""""U,V = |U||V|.COS(v)"""""""""""""""""""""""""" I HAVE PROOFED THIS FORMULA FROM THE POSTULATES. THE POSTULATE 1,2 AND 4 IS TRIVIAL FROM THIS FORMULA. HOW TO PROOF POSTULATE 3: LINEARITY: FROM THE FORMULA??????????????????????????????????????????? ?????????????????????????????????????????????????? ?????????????????????????????????????????????????? ?????????????????????????????????????????????????? ?????????????????????????????????????????????????? ?????????????????????????????????????????????????? ?????????????????????????????????????????????????? ?!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!! |
Thread Tools | |
Display Modes | |
|
|