![]() |
|
|
Thread Tools | Display Modes |
|
#1
|
|||
|
|||
![]()
Caltech News Release
For Immediate Release February 2, 2005 Caltech Receives $2.5 Million to Further Research in Millimeter-Wave Astronomy PASADENA, Calif.-The California Institute of Technology announces a $2.5 million award from the Gordon and Betty Moore Foundation to support the Combined Array for Research in Millimeter-Wave Astronomy (CARMA). CARMA will allow significant advances in the areas of astronomy and astrophysics. The combined array will become a frontline instrument for innovative research into the formation of galaxies, stars, planets, and the origins of life. At the increased level of instrumental sensitivity envisaged, CARMA will allow researchers to "see" almost to the edge of the universe, a few billion years after the Big Bang, and also to search comets, planet-forming disks, and the interstellar medium for chemical clues regarding the formation of complex organic molecules from which life may originate. CARMA is a collaboration between Caltech and the University of California at Berkeley, the University of Illinois, and the University of Maryland. It will merge the six 10.4-millimeter antenna telescopes of Caltech's Owens Valley Radio Observatory (OVRO) array with the nine 6.1-millimeter antenna telescopes of the Berkeley-Illinois-Maryland Association (BIMA) array, on a high-elevation 7,200-foot site at Cedar Flat in the Inyo Mountains near Big Pine, California. First light is anticipated this fall and full operation in 2006. The Moore Foundation grant will be used for relocation of the 15 antennas to Cedar Flat; construction of a control center; antenna pads; associated infrastructure; design and construction of a telescope transporter; development of state-of-the-art electronics and software; and other enhancements to ensure the successful integration into a single system for optimal performance. Relocation to the Cedar Flat high-elevation site will allow atmospheric transparency that is a factor of two greater than at the existing OVRO Observatory. With the improved atmospheric conditions, more telescopes, and updated electronics, the new facility will have 10 times the sensitivity and imaging speed of the current instruments. Shorter wavelength observations and resulting higher angular resolution will also be increased through the improved atmospheric transmission. With the new array's merged complement of OVRO and BIMA antennas, CARMA's imaging fidelity will be unsurpassed. Its unique ability to provide sensitive observations over a wide range of angular scales will enable scientific research not possible with any other existing instrument. According to Anneila Sargent, Rosen Professor of Astronomy and director of OVRO and CARMA, "CARMA builds on the pioneering technical and scientific achievements of the OVRO and BIMA arrays over the last 20 years. Millimeter-wave emission from molecular gas and dust has opened a critical window on the formation of stars, planets, and galaxies, and results from these arrays are increasingly intriguing. CARMA, with its improved sensitivity and imaging power, will allow us to make significant advances and to remain at the forefront of astronomical research and discovery." Sargent continues, "While CARMA will ensure our ability to undertake cutting-edge research, it will also serve a critical role as a university instrument. This new merged array will encourage the exploration of new technologies and techniques and will be a key component in training the next generation of U.S. millimeter-wave radio astronomers." Sargent concludes, "If someone asks me these days, 'How's your karma?', I tell them, 'My CARMA is good!'" ### |
#3
|
|||
|
|||
![]()
Dan Birchall writes:
wrote: CARMA is a collaboration between Caltech and the University of California at Berkeley, the University of Illinois, and the University of Maryland. It will merge the six 10.4-millimeter antenna telescopes of Caltech's Owens Valley Radio Observatory (OVRO) array with the nine 6.1-millimeter antenna telescopes of the Berkeley-Illinois-Maryland Association (BIMA) array, on a high-elevation 7,200-foot site at Cedar Flat in the Inyo Mountains near Big Pine, California. 10.4 millimeter? 6.1 millimeter? Geez, those are tiny telescopes! ![]() They meant, of course, 10.4 meter and 6.1 meter. Perhaps, though not necessarily. Sometimes a telescope is referred to by the wavelength at which it is designed to operate. I wonder why they're not also hooking into the Caltech Submillimeter Observatory Submillimeter? Gee, that's an even tinier telescope. Which makes my point. |
#4
|
|||
|
|||
![]()
wrote:
Dan Birchall writes: wrote: CARMA is a collaboration between Caltech and the University of California at Berkeley, the University of Illinois, and the University of Maryland. It will merge the six 10.4-millimeter antenna telescopes of Caltech's Owens Valley Radio Observatory (OVRO) array with the nine 6.1-millimeter antenna telescopes of the Berkeley-Illinois-Maryland Association (BIMA) array, on a high-elevation 7,200-foot site at Cedar Flat in the Inyo Mountains near Big Pine, California. 10.4 millimeter? 6.1 millimeter? Geez, those are tiny telescopes! ![]() They meant, of course, 10.4 meter and 6.1 meter. Perhaps, though not necessarily. Sometimes a telescope is referred to by the wavelength at which it is designed to operate. Well, the _range_ of wavelengths, typically. A telescope that only operated at a single wavelength would be rather... self-limiting. ![]() But the CARMA site at http://www.mmarray.org/ conveniently states the (correct) dimensions of the dishes in question, just in case there was any real uncertainty. I wonder why they're not also hooking into the Caltech Submillimeter Observatory Submillimeter? Gee, that's an even tinier telescope. Hee! Good one. ![]() Actually, I think I've figured it out - CSO is a single dish, while BIMA and OVRO have arrays, not unlike the SMA on Mauna Kea. (In fact, the BIMA dishes appear to be pretty similar in size to the SMA ones.) CARMA is more of an "array of arrays," I guess. Given that both arrays are located within California (albeit at opposite ends), it's not quite on as impressive a scale as the VLBA, but it's still nifty. I see your name a few places on the 05S1 schedule for 88, so maybe I'll TO one of those shifts and we can discuss teeny tiny telescopes. ![]() -- Dan Birchall, Hilo HI - http://hilom.multiply.com/ - images, words, technology |
Thread Tools | |
Display Modes | |
|
|
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
cheap access to space - majority opinion | Cameron Dorrough | Technology | 15 | June 27th 04 03:35 AM |
International Space Station Science - One of NASA's rising stars | Jacques van Oene | Space Station | 0 | December 27th 03 01:32 PM |
Astronomers to Coldly Go Where No-one Has Gone Before/Canada Foundationfor Innovation Invests Over $12M in Space Exploration (Forwarded) | Andrew Yee | Astronomy Misc | 0 | November 12th 03 02:07 AM |
Astronomers Break Ground on Atacama Large Millimeter Array (Forwarded) | Andrew Yee | Astronomy Misc | 0 | November 7th 03 05:15 PM |
National Research Council of Canada Okanagan Observatory to Build"Canadarm of Astronomy" (Forwarded) | Andrew Yee | Astronomy Misc | 0 | July 15th 03 08:39 PM |