![]() |
|
|
Thread Tools | Display Modes |
#1
|
|||
|
|||
![]()
http://www.theguardian.com/science/l...ral-relativity
"As described in Pedro Ferreira's book "The Perfect Theory", after its development by Albert Einstein about a 100 years ago, and the subsequent big splash of its vindication by Eddington's observations of stars near to the Sun during an eclipse, the general theory of relativity went into a bit of a lull, becoming something of a backwater. It answered the fundamental questions in physics that it was intended for, and the equations supported some interesting solutions, but the theory did not develop. Unusually for a great breakthrough in science, it did not seem to lead on to further exciting questions and phenomena, especially when contrasted with quantum theory, which was bursting out all over." Why was that? The answer is simple: The initial frauds were not yet forgotten and Einsteinians had problems with their conscience: http://irfu.cea.fr/Phocea/file.php?f...TE-052-456.pdf Jean-Marc Bonnet-Bidaud: "Le monde entier a cru pendant plus de cinquante ans à une théorie non vérifiée. Car, nous le savons aujourd'hui, les premières preuves, issues notamment d'une célèbre éclipse de 1919, n'en étaient pas. Elles reposaient en partie sur des manipulations peu avouables visant à obtenir un résultat connu à l'avance, et sur des mesures entachées d'incertitudes, quand il ne s'agissait pas de fraudes caractérisées." http://discovermagazine.com/2008/mar...out-relativity "The eclipse experiment finally happened in 1919. Eminent British physicist Arthur Eddington declared general relativity a success, catapulting Einstein into fame and onto coffee mugs. In retrospect, it seems that Eddington fudged the results, throwing out photos that showed the wrong outcome. No wonder nobody noticed: At the time of Einstein's death in 1955, scientists still had almost no evidence of general relativity in action." http://www.reformation.edu/scripture...izewinners.htm Frederick Soddy: "Incidentally the attempt to verify this during a recent solar eclipse, provided the world with the most disgusting spectacle perhaps ever witnessed of the lengths to which a preconceived notion can bias what was supposed to be an impartial scientific inquiry. For Eddington, who was one of the party, and ought to have been excluded as an ardent supporter of the theory that was under examination, in his description spoke of the feeling of dismay which ran through the expedition when it appeared at one time that Einstein might be wrong! Remembering that in this particular astronomical investigation, the corrections for the normal errors of observation - due to diffraction, temperature changes, and the like - exceeded by many times the magnitude of the predicted deflection of the star's ray being looked for, one wonders exactly what this sort of "science" is really worth." http://www.newscientist.com/article/...to-albert.html New Scientist: Ode to Albert: "Enter another piece of luck for Einstein. We now know that the light-bending effect was actually too small for Eddington to have discerned at that time. Had Eddington not been so receptive to Einstein's theory, he might not have reached such strong conclusions so soon, and the world would have had to wait for more accurate eclipse measurements to confirm general relativity." http://rover.ebay.com/rover/1/710-53...1617378150 72 Stephen Hawking: "Einsteins prediction of light deflection could not be tested immediately in 1915, because the First World War was in progress, and it was not until 1919 that a British expedition, observing an eclipse from West Africa, showed that light was indeed deflected by the sun, just as predicted by the theory. This proof of a German theory by British scientists was hailed as a great act of reconciliation between the two countries after the war. It is ionic, therefore, that later examination of the photographs taken on that expedition showed the errors were as great as the effect they were trying to measure. Their measurement had been sheer luck, or a case of knowing the result they wanted to get, not an uncommon occurrence in science." http://preterism.ning.com/forum/topi...trust-the-data "Consider the case of astronomer Walter Adams. In 1925 he tested Einstein's theory of relativity by measuring the red shift of the binary companion of Sirius, brightest star in the sky. Einstein's theory predicted a red shift of six parts in a hundred thousand; Adams found just such an effect. A triumph for relativity. However, in 1971, with updated estimates of the mass and radius of Sirius, it was found that the predicted red shift should have been much larger - 28 parts in a hundred thousand. Later observations of the red shift did indeed measure this amount, showing that Adams' observations were flawed. He "saw" what he had expected to see." http://adsabs.harvard.edu/abs/2010AAS...21530404H "In January 1924 Arthur Eddington wrote to Walter S. Adams at the Mt. Wilson Observatory suggesting a measurement of the "Einstein shift" in Sirius B and providing an estimate of its magnitude. Adams' 1925 published results agreed remarkably well with Eddington's estimate. Initially this achievement was hailed as the third empirical test of General Relativity (after Mercury's anomalous perihelion advance and the 1919 measurement of the deflection of starlight). It has been known for some time that both Eddington's estimate and Adams' measurement underestimated the true Sirius B gravitational redshift by a factor of four." http://adsabs.harvard.edu/full/1980QJRAS..21..246H "...Eddington asked Adams to attempt the measurement. (...) ...Adams reported an average differential redshift of nineteen kilometers per second, very nearly the predicted gravitational redshift. Eddington was delighted with the result... (...) In 1928 Joseph Moore at the Lick Observatory measured differences between the redshifts of Sirius and Sirius B... (...) ...the average was nineteen kilometers per second, precisely what Adams had reported.. (...) More seriously damaging to the reputation of Adams and Moore is the measurement in the 1960s at Mount Wilson by Jesse Greenstein, J.Oke, and H..Shipman. They found a differential redshift for Sirius B of roughly eighty kilometers per second." Pentcho Valev |
#2
|
|||
|
|||
![]()
http://news.nationalpost.com/news/ca...ry-renaissance
"Perimeter Institute celebrates Einstein's theory of general relativity and its contemporary renaissance (...) But for about 50 years after Einstein's initial papers, his most important work lay almost dormant. Few scientists were then studying notions that have become ubiquitous in pop science and science fiction: black holes, theoretical time travel, and mysterious dark matter permeating the universe. Then, in the mid-20th century, scientists sought to better understand the cosmos, general relativity suddenly seemed to explain almost everything. (Except certain quantum theories which don't seem to bend to the forces of gravity and could one day unravel the entire theory). As physicists gather at the Perimeter Institute in Waterloo, Ontario this week for the think tank's first Convergence conference, they'll mark the anniversary of a powerful but perhaps flawed theory that underpins so much of their work." Powerful but perhaps flawed? And the flaw is... spacetime, the absurd consequence of Einstein's 1905 false constant-speed-of-light postulate: https://edge.org/response-detail/25477 What scientific idea is ready for retirement? Steve Giddings: "Spacetime. Physics has always been regarded as playing out on an underlying stage of space and time. Special relativity joined these into spacetime... (...) The apparent need to retire classical spacetime as a fundamental concept is profound..." https://www.youtube.com/watch?v=U47kyV4TMnE Nima Arkani-Hamed (06:11): "Almost all of us believe that space-time doesn't really exist, space-time is doomed and has to be replaced by some more primitive building blocks." http://www.guardian.co.uk/books/2013...reality-review "And by making the clock's tick relative - what happens simultaneously for one observer might seem sequential to another - Einstein's theory of special relativity not only destroyed any notion of absolute time but made time equivalent to a dimension in space: the future is already out there waiting for us; we just can't see it until we get there. This view is a logical and metaphysical dead end, says Smolin." http://www.amazon.com/Time-Reborn-Cr.../dp/0547511728 "Was Einstein wrong? At least in his understanding of time, Smolin argues, the great theorist of relativity was dead wrong. What is worse, by firmly enshrining his error in scientific orthodoxy, Einstein trapped his successors in insoluble dilemmas..." http://www.newscientist.com/article/...spacetime.html NEW SCIENTIST: "Rethinking Einstein: The end of space-time. IT WAS a speech that changed the way we think of space and time. The year was 1908, and the German mathematician Hermann Minkowski had been trying to make sense of Albert Einstein's hot new idea - what we now know as special relativity - describing how things shrink as they move faster and time becomes distorted. "Henceforth space by itself and time by itself are doomed to fade into the mere shadows," Minkowski proclaimed, "and only a union of the two will preserve an independent reality." And so space-time - the malleable fabric whose geometry can be changed by the gravity of stars, planets and matter - was born. It is a concept that has served us well, but if physicist Petr Horava is right, it may be no more than a mirage. (...) For decades now, physicists have been stymied in their efforts to reconcile Einstein's general theory of relativity, which describes gravity, and quantum mechanics, which describes particles and forces (except gravity) on the smallest scales. The stumbling block lies with their conflicting views of space and time. As seen by quantum theory, space and time are a static backdrop against which particles move. In Einstein's theories, by contrast, not only are space and time inextricably linked, but the resulting space-time is moulded by the bodies within it. (...) Something has to give in this tussle between general relativity and quantum mechanics, and the smart money says that it's relativity that will be the loser." http://www.homevalley.co.za/index.ph...s-are-changing "Einstein introduced a new notion of time, more radical than even he at first realized. In fact, the view of time that Einstein adopted was first articulated by his onetime math teacher in a famous lecture delivered one century ago. That lecture, by the German mathematician Hermann Minkowski, established a new arena for the presentation of physics, a new vision of the nature of reality redefining the mathematics of existence. The lecture was titled Space and Time, and it introduced to the world the marriage of the two, now known as spacetime. It was a good marriage, but lately physicists passion for spacetime has begun to diminish. And some are starting to whisper about possible grounds for divorce. (...) Einstein's famous insistence that the velocity of light is a cosmic speed limit made sense, Minkowski saw, only if space and time were intertwined. (...) Physicists of the 21st century therefore face the task of finding the true reality obscured by the spacetime mirage. (...) Andreas Albrecht, a cosmologist at the University of California, Davis, has thought deeply about choosing clocks, leading him to some troubling realizations. (...) "It seems to me like it's a time in the development of physics," says Albrecht, "where it's time to look at how we think about space and time very differently." Pentcho Valev |
#3
|
|||
|
|||
![]()
https://philippelefloch.wordpress.com/gr-celebration/
George Ellis: "Einstein's General Theory: What Makes It Different From The Rest Of Physics? Why Does This Make It Difficult To Deal With?" Unlike the rest of physics which is deductive (based on mechanistic models in the sense described below), Einstein's general relativity is just an empirical model: http://collum.chem.cornell.edu/docum...ve_Fitting.pdf "The objective of curve fitting is to theoretically describe experimental data with a model (function or equation) and to find the parameters associated with this model. Models of primary importance to us are mechanistic models. Mechanistic models are specifically formulated to provide insight into a chemical, biological, or physical process that is thought to govern the phenomenon under study. Parameters derived from mechanistic models are quantitative estimates of real system properties (rate constants, dissociation constants, catalytic velocities etc.). It is important to distinguish mechanistic models from empirical models that are mathematical functions formulated to fit a particular curve but whose parameters do not necessarily correspond to a biological, chemical or physical property." The making of Einstein's general relativity was analogous to "curve fitting". As the following two texts clearly show, Einstein and his mathematical friends had to change and fudge the equations countless times until "excellent agreement" with known in advance results and pet assumptions was reached (that is, their model was empirical, not deductive): http://www.weylmann.com/besso.pdf Michel Janssen: "But - as we know from a letter to his friend Conrad Habicht of December 24, 1907 - one of the goals that Einstein set himself early on, was to use his new theory of gravity, whatever it might turn out to be, to explain the discrepancy between the observed motion of the perihelion of the planet Mercury and the motion predicted on the basis of Newtonian gravitational theory. (...) The Einstein-Grossmann theory - also known as the "Entwurf" ("outline") theory after the title of Einstein and Grossmann's paper - is, in fact, already very close to the version of general relativity published in November 1915 and constitutes an enormous advance over Einstein's first attempt at a generalized theory of relativity and theory of gravitation published in 1912. The crucial breakthrough had been that Einstein had recognized that the gravitational field - or, as we would now say, the inertio-gravitational field - should not be described by a variable speed of light as he had attempted in 1912, but by the so-called metric tensor field. The metric tensor is a mathematical object of 16 components, 10 of which independent, that characterizes the geometry of space and time. In this way, gravity is no longer a force in space and time, but part of the fabric of space and time itself: gravity is part of the inertio-gravitational field.. Einstein had turned to Grossmann for help with the difficult and unfamiliar mathematics needed to formulate a theory along these lines. (...) Einstein did not give up the Einstein-Grossmann theory once he had established that it could not fully explain the Mercury anomaly. He continued to work on the theory and never even mentioned the disappointing result of his work with Besso in print. So Einstein did not do what the influential philosopher Sir Karl Popper claimed all good scientists do: once they have found an empirical refutation of their theory, they abandon that theory and go back to the drawing board. (...) On November 4, 1915, he presented a paper to the Berlin Academy officially retracting the Einstein-Grossmann équations and replacing them with new ones. On November 11, a short addendum to this paper followed, once again changing his field equations. A week later, on November 18, Einstein presented the paper containing his celebrated explanation of the perihelion motion of Mercury on the basis of this new theory. Another week later he changed the field equations once more. These are the equations still used today. This last change did not affect the result for the perihelion of Mercury. Besso is not acknowledged in Einstein's paper on the perihelion problem. Apparently, Besso's help with this technical problem had not been as valuable to Einstein as his role as sounding board that had earned Besso the famous acknowledgment in the special relativity paper of 1905. Still, an acknowledgment would have been appropriate. After all, what Einstein had done that week in November, was simply to redo the calculation he had done with Besso in June 1913, using his new field equations instead of the Einstein-Grossmann equations. It is not hard to imagine Einstein's excitement when he inserted the numbers for Mercury into the new expression he found and the result was 43", in excellent agreement with observation." http://www.lemonde.fr/planete/articl...1703_3244.html "C'est Ã* ce moment de l'histoire que commence celle, méconnue, du manuscrit Einstein-Besso. Le physicien convoque son ami et confident suisse pour l'aider Ã* mener les calculs et tester son ébauche de relativité générale sur un problème bien connu des astronomes : l'anomalie de l'orbite de Mercure. "Depuis la fin du XIXe siècle, on sait de manière de plus en plus précise que le périhélie de cette planète (le point de son orbite le plus proche du Soleil) avance un peu plus que le prévoient les équations de Newton : l'excédent est de 43 secondes d'arc par siècle, c'est-Ã*-dire l'angle sous lequel on voit un cheveu Ã* une distance d'un mètre.... Einstein se dit simplement que sa théorie sera validée si elle prédit correctement cette "anomalie" de l'avance du périhélie de Mercure." Une part du manuscrit Einstein-Besso est consacrée Ã* ce test crucial. Aux pages d'Einstein, des lignes d'équations, sans ratures, presque vierges de tout texte, succèdent celles de Besso, un peu plus hésitantes et annotées de nombreuses explications. Le résultat est calamiteux. Au lieu d'expliquer le petit décalage de 43 secondes d'arc par siècle, la nouvelle théorie propose une avance de plus de 1 800 secondes d'arc par siècle. Très loin de la réalité des observations astronomiques ! "Mais, un peu plus loin dans le manuscrit, les deux hommes se rendent compte qu'ils se sont trompés sur la masse du Soleil"... Une erreur d'un facteur 10, qu'ils corrigent finalement, pour parvenir Ã* un résultat moins absurde, mais toujours décevant : 18 secondes d'arc par siècle... Echec complet ? Un peu plus loin, en conclusion d'un tout autre calcul, Einstein écrit : "Stimmt" ("Correct"). "En dépit de l'échec de sa théorie Ã* expliquer l'avance du périhélie de Mercure, Einstein croit avoir démontré autre chose, au détour d'une équation... En mai 1907, il avait eu l'intuition qu'une chute libre peut "annuler" un champ de gravitation. Ici, il pense avoir démontré qu'un mouvement de rotation peut, lui aussi, être considéré comme équivalent Ã* un champ de gravitation. Il croit avoir généralisé son principe d'équivalence." Mais, plus de deux ans plus tard, Einstein comprend que son calcul était faux : il n'a rien généralisé du tout. C'est alors qu'il accepte d'utiliser dans sa théorie le premier tenseur, jugé trop complexe, que lui avait proposé Grossmann. Et en 1915, il teste ce nouveau tenseur sur l'avance du périhélie de Mercure. Cette fois, le résultat est le bon !" In terms of Einstein's text below, unlike special relativity, general relativity was "a purely empirical enterprise" - Einstein's mathematical friends helped him to compile "a classified catalogue" where known in advance results and pet assumptions (e.g. that of gravitational time dilation) coexisted in an apparently consistent manner: https://www.marxists.org/reference/a...ative/ap03.htm Albert Einstein: "From a systematic theoretical point of view, we may imagine the process of evolution of an empirical science to be a continuous process of induction. Theories are evolved and are expressed in short compass as statements of a large number of individual observations in the form of empirical laws, from which the general laws can be ascertained by comparison.. Regarded in this way, the development of a science bears some resemblance to the compilation of a classified catalogue. It is, as it were, a purely empirical enterprise. But this point of view by no means embraces the whole of the actual process ; for it slurs over the important part played by intuition and deductive thought in the development of an exact science. As soon as a science has emerged from its initial stages, theoretical advances are no longer achieved merely by a process of arrangement. Guided by empirical data, the investigator rather develops a system of thought which, in general, is built up logically from a small number of fundamental assumptions, the so-called axioms." The empirically chosen equations were gloriously compatible with known in advance results and pet assumptions but there was collateral damage as well - some of the predictions proved absurd. For instance, the speed of falling photons turned out to DECREASE (their acceleration in the gravitational field of the Earth was predicted to be -2g) - a general relativity result clever Einsteinians very much want to forget: http://www.physlink.com/Education/AskExperts/ae13.cfm "Contrary to intuition, the speed of light (properly defined) decreases as the black hole is approached. (...) If the photon, the 'particle' of light, is thought of as behaving like a massive object, it would indeed be accelerated to higher speeds as it falls toward a black hole. However, the photon has no mass and so behaves in a manner that is not intuitively obvious. (....) When we say that the speed of light is decreased, we mean from the perspective of an observer fixed relative to the black hole and at an essentially infinite distance. On the contrary, to an observer free falling into the black hole, the speed of light, measured locally, would be unaltered from the standard value of c. Most of us have heard of the result from special relativity that the speed of light is the same for all observers in inertial frames. The result is not the same in general relativity. In general relativity, the statement becomes that the speed of light is the same (i.e., good old 'c') for all observers in local inertial frames. Local inertial frames in general relativity are just those frames of reference in which the observer is in gravitational free fall. (...) So, it is absolutely true that the speed of light is not constant in a gravitational field [which, by the equivalence principle, applies as well to accelerating (non-inertial) frames of reference]. (...) Indeed, this is exactly how Einstein did the calculation in: "On the Influence of Gravitation on the Propagation of Light," Annalen der Physik, 35, 1911, which predated the full formal development of general relativity by about four years. This paper is widely available in English. You can find a copy beginning on page 99 of the Dover book "The Principle of Relativity." You will find in section 3 of that paper, Einstein's derivation of the (variable) speed of light in a gravitational potential, eqn (3). The result is, c'=c0(1+V/c^2), where V is the gravitational potential relative to the point where the speed of light c0 is measured. You can find a more sophisticated result derived later by Einstein from the full general theory in the weak field approximation in the book: 'The Meaning of Relativity,' A. Einstein, Princeton University Press (1955). See pp. 92-93, eqn (107)." http://www.speed-light.info/speed_of_light_variable.htm "Einstein wrote this paper in 1911 in German. (...) ...you will find in section 3 of that paper Einstein's derivation of the variable speed of light in a gravitational potential, eqn (3). The result is: c'=c0(1+φ/c^2) where φ is the gravitational potential relative to the point where the speed of light c0 is measured. Simply put: Light appears to travel slower in stronger gravitational fields (near bigger mass). (...) You can find a more sophisticated derivation later by Einstein (1955) from the full theory of general relativity in the weak field approximation. (...) Namely the 1955 approximation shows a variation in km/sec twice as much as first predicted in 1911." http://www.mathpages.com/rr/s6-01/6-01.htm "Specifically, Einstein wrote in 1911 that the speed of light at a place with the gravitational potential φ would be c(1+φ/c^2), where c is the nominal speed of light in the absence of gravity. In geometrical units we define c=1, so Einstein's 1911 formula can be written simply as c'=1+φ. However, this formula for the speed of light (not to mention this whole approach to gravity) turned out to be incorrect, as Einstein realized during the years leading up to 1915 and the completion of the general theory. (...) ...we have c_r =1+2φ, which corresponds to Einstein's 1911 equation, except that we have a factor of 2 instead of 1 on the potential term." Pentcho Valev |
#4
|
|||
|
|||
![]() Dear EINSTEIN'S GENERAL RELATIVITY IN DISGRACE FOR 50 YEARS people, I hope this mail will find you are doing very well. Recently, I have written a paper. "Time at the Light Speed" http://www.w-g.jp/member/suzuki/time-at-light-speed.htm In Einstein's theory of relativity, when an object moves at the light speed, time stops and the object becomes a line. My paper shows a new explanation for these phenomena. New thoughts are often eccentric. My paper is also eccentric. But if you understand the contents, they are very interesting and important. Especially, please see "Figure 9. Field of Soul-Energy". If this figure is understood, the essence of this paper is understood. Also I wrote about god and soul. The contents of this paper have not been proved scientifically. But, mere imagination is valuable if it is closer to the truth than conventional thoughts. I think this paper is closer to the truth than the Einstein's theory of relativity. Please have a look. Yours Sincerely Toshio Suzuki |
Thread Tools | |
Display Modes | |
|
|
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Proof that Einstein is a LYING IDIOT 15 years AFTER his first relativity paper. | Androcles[_39_] | Amateur Astronomy | 464 | March 29th 11 06:09 PM |
1 2 3 - General Relativity | Marvin the Martian | Policy | 0 | March 13th 10 02:25 AM |
Einstein Was Right: General Relativity Confirmed | dlzc | Astronomy Misc | 0 | March 11th 10 12:13 AM |
GENERAL RELATIVITY WITHOUT SPECIAL RELATIVITY | Pentcho Valev | Astronomy Misc | 12 | January 1st 09 03:20 PM |
Disproving Einstein's General Relativity (GR) | Pentcho Valev | Astronomy Misc | 1 | September 2nd 07 12:37 PM |