A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Astronomy Misc
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

GENERAL RELATIVITY WAS AN EMPIRICAL MODEL



 
 
Thread Tools Display Modes
  #1  
Old April 28th 15, 08:10 AM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default GENERAL RELATIVITY WAS AN EMPIRICAL MODEL

http://collum.chem.cornell.edu/docum...ve_Fitting.pdf
"The objective of curve fitting is to theoretically describe experimental data with a model (function or equation) and to find the parameters associated with this model. Models of primary importance to us are mechanistic models. Mechanistic models are specifically formulated to provide insight into a chemical, biological, or physical process that is thought to govern the phenomenon under study. Parameters derived from mechanistic models are quantitative estimates of real system properties (rate constants, dissociation constants, catalytic velocities etc.). It is important to distinguish mechanistic models from empirical models that are mathematical functions formulated to fit a particular curve but whose parameters do not necessarily correspond to a biological, chemical or physical property."

The making of Einstein's general relativity was analogous to "curve fitting". As the following texts clearly show, Einstein and his mathematical friends had to change and fudge the equations countless times until "excellent agreement" with known in advance results and assumptions was reached (that is, their model was empirical, not mechanistic):

http://www.weylmann.com/besso.pdf
Michel Janssen: "But - as we know from a letter to his friend Conrad Habicht of December 24, 1907 - one of the goals that Einstein set himself early on, was to use his new theory of gravity, whatever it might turn out to be, to explain the discrepancy between the observed motion of the perihelion of the planet Mercury and the motion predicted on the basis of Newtonian gravitational theory. (...) The Einstein-Grossmann theory - also known as the "Entwurf" ("outline") theory after the title of Einstein and Grossmann's paper - is, in fact, already very close to the version of general relativity published in November 1915 and constitutes an enormous advance over Einstein's first attempt at a generalized theory of relativity and theory of gravitation published in 1912. The crucial breakthrough had been that Einstein had recognized that the gravitational field - or, as we would now say, the inertio-gravitational field - should not be described by a variable speed of light as he had attempted in 1912, but by the so-called metric tensor field. The metric tensor is a mathematical object of 16 components, 10 of which independent, that characterizes the geometry of space and time. In this way, gravity is no longer a force in space and time, but part of the fabric of space and time itself: gravity is part of the inertio-gravitational field.. Einstein had turned to Grossmann for help with the difficult and unfamiliar mathematics needed to formulate a theory along these lines. (...) Einstein did not give up the Einstein-Grossmann theory once he had established that it could not fully explain the Mercury anomaly. He continued to work on the theory and never even mentioned the disappointing result of his work with Besso in print. So Einstein did not do what the influential philosopher Sir Karl Popper claimed all good scientists do: once they have found an empirical refutation of their theory, they abandon that theory and go back to the drawing board. (...) On November 4, 1915, he presented a paper to the Berlin Academy officially retracting the Einstein-Grossmann équations and replacing them with new ones. On November 11, a short addendum to this paper followed, once again changing his field equations. A week later, on November 18, Einstein presented the paper containing his celebrated explanation of the perihelion motion of Mercury on the basis of this new theory. Another week later he changed the field equations once more. These are the equations still used today. This last change did not affect the result for the perihelion of Mercury. Besso is not acknowledged in Einstein's paper on the perihelion problem. Apparently, Besso's help with this technical problem had not been as valuable to Einstein as his role as sounding board that had earned Besso the famous acknowledgment in the special relativity paper of 1905. Still, an acknowledgment would have been appropriate. After all, what Einstein had done that week in November, was simply to redo the calculation he had done with Besso in June 1913, using his new field equations instead of the Einstein-Grossmann equations. It is not hard to imagine Einstein's excitement when he inserted the numbers for Mercury into the new expression he found and the result was 43", in excellent agreement with observation."

http://www.lemonde.fr/planete/articl...1703_3244.html
"C'est à ce moment de l'histoire que commence celle, méconnue, du manuscrit Einstein-Besso. Le physicien convoque son ami et confident suisse pour l'aider à mener les calculs et tester son ébauche de relativité générale sur un problème bien connu des astronomes : l'anomalie de l'orbite de Mercure. "Depuis la fin du XIXe siècle, on sait de manière de plus en plus précise que le périhélie de cette planète (le point de son orbite le plus proche du Soleil) avance un peu plus que le prévoient les équations de Newton : l'excédent est de 43 secondes d'arc par siècle, c'est-à-dire l'angle sous lequel on voit un cheveu à une distance d'un mètre... Einstein se dit simplement que sa théorie sera validée si elle prédit correctement cette "anomalie" de l'avance du périhélie de Mercure." Une part du manuscrit Einstein-Besso est consacrée à ce test crucial. Aux pages d'Einstein, des lignes d'équations, sans ratures, presque vierges de tout texte, succèdent celles de Besso, un peu plus hésitantes et annotées de nombreuses explications. Le résultat est calamiteux. Au lieu d'expliquer le petit décalage de 43 secondes d'arc par siècle, la nouvelle théorie propose une avance de plus de 1 800 secondes d'arc par siècle. Très loin de la réalité des observations astronomiques ! "Mais, un peu plus loin dans le manuscrit, les deux hommes se rendent compte qu'ils se sont trompés sur la masse du Soleil"... Une erreur d'un facteur 10, qu'ils corrigent finalement, pour parvenir à un résultat moins absurde, mais toujours décevant : 18 secondes d'arc par siècle... Echec complet ? Un peu plus loin, en conclusion d'un tout autre calcul, Einstein écrit : "Stimmt" ("Correct"). "En dépit de l'échec de sa théorie à expliquer l'avance du périhélie de Mercure, Einstein croit avoir démontré autre chose, au détour d'une équation... En mai 1907, il avait eu l'intuition qu'une chute libre peut "annuler" un champ de gravitation. Ici, il pense avoir démontré qu'un mouvement de rotation peut, lui aussi, être considéré comme équivalent à un champ de gravitation. Il croit avoir généralisé son principe d'équivalence." Mais, plus de deux ans plus tard, Einstein comprend que son calcul était faux : il n'a rien généralisé du tout. C'est alors qu'il accepte d'utiliser dans sa théorie le premier tenseur, jugé trop complexe, que lui avait proposé Grossmann. Et en 1915, il teste ce nouveau tenseur sur l'avance du périhélie de Mercure. Cette fois, le résultat est le bon !"

Pentcho Valev
  #2  
Old April 29th 15, 02:13 PM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default GENERAL RELATIVITY WAS AN EMPIRICAL MODEL

General relativity was an empirical model, but special relativity was deductive (with a false postulate and a few invalid arguments). There was no evidence supporting the constancy of the speed of light (rather, any reliable evidence supported the variable speed of light predicted by Newton's emission theory of light). Einstein derived the false constancy from the Lorentz transforms, then called it "postulate" and finally, in his 1905 paper, derived the Lorentz transforms from the postulate (the gullible world was enraptured):

http://germanhistorydocs.ghi-dc.org/...in_ENGLISH.pdf
Albert Einstein, What Is The Theory Of Relativity? (November 28, 1919): "The second principle, on which the special theory of relativity rests, is the "principle of the constant velocity of light in vacuo." This principle asserts that light in vacuo always has a definite velocity of propagation (independent of the state of motion of the observer or of the source of the light). The confidence which physicists place in this principle springs from the successes achieved by the electrodynamics of Maxwell and Lorentz."

http://www.amazon.com/Introduction-S.../dp/048668895X
Introduction to Special Relativity, James H. Smith, p. 42: "We must emphasize that at the time Einstein proposed it [his second postulate], there was no direct experimental evidence whatever for the speed of light being independent of the speed of its source. He postulated it out of logical necessity."

The speed of light is not constant - rather, both the frequency and the speed of light (relative to the observer) VARY with the speed of the observer, as the following videos clearly show:

http://www.youtube.com/watch?v=bg7O4rtlwEE
"Doppler effect - when an observer moves towards a stationary source. ...the velocity of the wave relative to the observer is faster than that when it is still."

http://www.youtube.com/watch?v=SC0Q6-xt-Xs
"Doppler effect - when an observer moves away from a stationary source. ....the velocity of the wave relative to the observer is slower than that when it is still."

Pentcho Valev
  #3  
Old May 2nd 15, 10:19 AM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default GENERAL RELATIVITY WAS AN EMPIRICAL MODEL

String theory is another empirical model:

http://blogs.scientificamerican.com/...-final-theory/

John Horgan: "In your new book, To Explain the World, you write that "scientific theories cannot be deduced by purely mathematical reasoning." Doesn't that principle apply to string theory? At what point, if ever, should string theory be abandoned as a dead end?"

Steven Weinberg: "String theory may be inspired by mathematical reasoning, but not deduced, and certainly not confirmed."

Pentcho Valev
  #4  
Old May 7th 15, 09:02 AM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default GENERAL RELATIVITY WAS AN EMPIRICAL MODEL

https://www.marxists.org/reference/a...ative/ap03.htm
Albert Einstein: "From a systematic theoretical point of view, we may imagine the process of evolution of an empirical science to be a continuous process of induction. Theories are evolved and are expressed in short compass as statements of a large number of individual observations in the form of empirical laws, from which the general laws can be ascertained by comparison.. Regarded in this way, the development of a science bears some resemblance to the compilation of a classified catalogue. It is, as it were, a purely empirical enterprise. But this point of view by no means embraces the whole of the actual process ; for it slurs over the important part played by intuition and deductive thought in the development of an exact science. As soon as a science has emerged from its initial stages, theoretical advances are no longer achieved merely by a process of arrangement. Guided by empirical data, the investigator rather develops a system of thought which, in general, is built up logically from a small number of fundamental assumptions, the so-called axioms."

Special relativity was indeed "built up logically from a small number of fundamental assumptions" but, as the following texts clearly show, general relativity was "a purely empirical enterprise" - Einstein's mathematical friends helped him to compile "a classified catalogue" where known in advance results and pet assumptions (e.g. that of gravitational time dilation) coexisted in an apparently consistent manner:

http://www.weylmann.com/besso.pdf
Michel Janssen: "But - as we know from a letter to his friend Conrad Habicht of December 24, 1907 - one of the goals that Einstein set himself early on, was to use his new theory of gravity, whatever it might turn out to be, to explain the discrepancy between the observed motion of the perihelion of the planet Mercury and the motion predicted on the basis of Newtonian gravitational theory. (...) The Einstein-Grossmann theory - also known as the "Entwurf" ("outline") theory after the title of Einstein and Grossmann's paper - is, in fact, already very close to the version of general relativity published in November 1915 and constitutes an enormous advance over Einstein's first attempt at a generalized theory of relativity and theory of gravitation published in 1912. The crucial breakthrough had been that Einstein had recognized that the gravitational field - or, as we would now say, the inertio-gravitational field - should not be described by a variable speed of light as he had attempted in 1912, but by the so-called metric tensor field. The metric tensor is a mathematical object of 16 components, 10 of which independent, that characterizes the geometry of space and time. In this way, gravity is no longer a force in space and time, but part of the fabric of space and time itself: gravity is part of the inertio-gravitational field.. Einstein had turned to Grossmann for help with the difficult and unfamiliar mathematics needed to formulate a theory along these lines. (...) Einstein did not give up the Einstein-Grossmann theory once he had established that it could not fully explain the Mercury anomaly. He continued to work on the theory and never even mentioned the disappointing result of his work with Besso in print. So Einstein did not do what the influential philosopher Sir Karl Popper claimed all good scientists do: once they have found an empirical refutation of their theory, they abandon that theory and go back to the drawing board. (...) On November 4, 1915, he presented a paper to the Berlin Academy officially retracting the Einstein-Grossmann équations and replacing them with new ones. On November 11, a short addendum to this paper followed, once again changing his field equations. A week later, on November 18, Einstein presented the paper containing his celebrated explanation of the perihelion motion of Mercury on the basis of this new theory. Another week later he changed the field equations once more. These are the equations still used today. This last change did not affect the result for the perihelion of Mercury. Besso is not acknowledged in Einstein's paper on the perihelion problem. Apparently, Besso's help with this technical problem had not been as valuable to Einstein as his role as sounding board that had earned Besso the famous acknowledgment in the special relativity paper of 1905. Still, an acknowledgment would have been appropriate. After all, what Einstein had done that week in November, was simply to redo the calculation he had done with Besso in June 1913, using his new field equations instead of the Einstein-Grossmann equations. It is not hard to imagine Einstein's excitement when he inserted the numbers for Mercury into the new expression he found and the result was 43", in excellent agreement with observation." x

http://www.lemonde.fr/planete/articl...1703_3244.html
"C'est à ce moment de l'histoire que commence celle, méconnue, du manuscrit Einstein-Besso. Le physicien convoque son ami et confident suisse pour l'aider à mener les calculs et tester son ébauche de relativité générale sur un problème bien connu des astronomes : l'anomalie de l'orbite de Mercure. "Depuis la fin du XIXe siècle, on sait de manière de plus en plus précise que le périhélie de cette planète (le point de son orbite le plus proche du Soleil) avance un peu plus que le prévoient les équations de Newton : l'excédent est de 43 secondes d'arc par siècle, c'est-à-dire l'angle sous lequel on voit un cheveu à une distance d'un mètre... Einstein se dit simplement que sa théorie sera validée si elle prédit correctement cette "anomalie" de l'avance du périhélie de Mercure." Une part du manuscrit Einstein-Besso est consacrée à ce test crucial. Aux pages d'Einstein, des lignes d'équations, sans ratures, presque vierges de tout texte, succèdent celles de Besso, un peu plus hésitantes et annotées de nombreuses explications. Le résultat est calamiteux. Au lieu d'expliquer le petit décalage de 43 secondes d'arc par siècle, la nouvelle théorie propose une avance de plus de 1 800 secondes d'arc par siècle. Très loin de la réalité des observations astronomiques ! "Mais, un peu plus loin dans le manuscrit, les deux hommes se rendent compte qu'ils se sont trompés sur la masse du Soleil"... Une erreur d'un facteur 10, qu'ils corrigent finalement, pour parvenir à un résultat moins absurde, mais toujours décevant : 18 secondes d'arc par siècle... Echec complet ? Un peu plus loin, en conclusion d'un tout autre calcul, Einstein écrit : "Stimmt" ("Correct"). "En dépit de l'échec de sa théorie à expliquer l'avance du périhélie de Mercure, Einstein croit avoir démontré autre chose, au détour d'une équation... En mai 1907, il avait eu l'intuition qu'une chute libre peut "annuler" un champ de gravitation. Ici, il pense avoir démontré qu'un mouvement de rotation peut, lui aussi, être considéré comme équivalent à un champ de gravitation. Il croit avoir généralisé son principe d'équivalence." Mais, plus de deux ans plus tard, Einstein comprend que son calcul était faux : il n'a rien généralisé du tout. C'est alors qu'il accepte d'utiliser dans sa théorie le premier tenseur, jugé trop complexe, que lui avait proposé Grossmann. Et en 1915, il teste ce nouveau tenseur sur l'avance du périhélie de Mercure. Cette fois, le résultat est le bon !" x

Pentcho Valev
 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Electrodynamics in general relativity Koobee Wublee Astronomy Misc 3 February 14th 13 10:40 PM
1 2 3 - General Relativity Marvin the Martian Policy 0 March 13th 10 02:25 AM
GENERAL RELATIVITY WITHOUT SPECIAL RELATIVITY Pentcho Valev Astronomy Misc 12 January 1st 09 03:20 PM
general relativity website Oh No Research 0 December 31st 07 10:18 AM
MUON LIFETIME AT REST (was: relativity hates empirical observations) Pentcho Valev Astronomy Misc 0 October 20th 07 09:04 AM


All times are GMT +1. The time now is 12:57 AM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright ©2004-2025 SpaceBanter.com.
The comments are property of their posters.