A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily 3703



 
 
Thread Tools Display Modes
  #1  
Old September 27th 04, 05:40 PM
external usenet poster
 
Posts: n/a
Default Daily 3703

HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

DAILY REPORT # 3703

PERIOD COVERED: DOYs 268-270

OBSERVATIONS SCHEDULED

WFPC2 9965

Expansion distances to the symbiotic Miras He 2-104 and He 2-147

We propose to measure the expansion parallax of the nebulae around the
binary symbiotic Miras He 2-104 {the Southern Crab} and He 2-147 by
means of high resolution WFPC2/F658N images to be taken at two
different epochs. Given the large outward velocities of these nebulae
inferred from ground-based spectroscopy, their apparent expansion can
be measured by HST imaging over timescales of only 2-3 years.
Combining the angular and radial velocity expansions will
straightforwardly yield the distance to the proposed targets.
Knowledge of the distance to these nebulae will provide a solid
contribution to a variety of research fields such as {a} the
energetics of nuclear burning in symbiotic binaries containing a Mira,
{b} the pulsation mode of binary Miras, and {c} the viability of Mira
symbiotics as supersoft X-ray sources and potential progenitors of
Type Ia supernovae. HST high resolution imaging of the nebulae
combined with ground-based spectroscopy will also address the still
debated issue of the formation of bipolar nebulae by collimated
outflows from evolved stars.

NIC2 9875

The Fundamental Plane of Massive Gas-Rich Mergers

We propose deep NICMOS H-band imaging of a carefully selected sample
of 33 luminous, late-stage galactic mergers. This program is part of a
comprehensive investigation of the most luminous mergers in the nearby
universe, the ultraluminous infrared galaxies {ULIGs}. The
high-resolution HST images will complement an extensive set of
ground-based data that include long-slit NIR spectra from a recently
approved Large VLT Programme. This unique dataset will allow us to
derive with unprecedented precision structural -and- kinematic
parameters for a large unbiased sample of objects spanning the entire
ULIG luminosity function. These data will refine the fundamental plane
of massive gas-rich mergers and enable us to answer the following
questions: {1} Do ultraluminous mergers form elliptical galaxies, and
in particular, giant ellipticals? {2} Do ULIGs evolve into optically
bright QSOs? The results from this detailed study of massive mergers
in the local universe will be relevant to understanding galaxy
formation and evolution at earlier epochs, and in particular, the
dusty sub-mm population that accounts for more than half of the star
formation at z 1.

NIC1/NIC2/NIC3 8793

NICMOS Post-SAA calibration - CR Persistence Part 4

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be
non-standard reference files available to users with a USEAFTER
date/time mark. The keyword 'USEAFTER=date/time' will also be added to
the header of each POST-SAA DARK frame. The keyword must be populated
with the time, in addition to the date, because HST crosses the SAA ~8
times per day so each POST-SAA DARK will need to have the appropriate
time specified, for users to identify the ones they need. Both the raw
and processed images will be archived as POST-SAA DARKSs. Generally we
expect that all NICMOS science/calibration observations started within
50 minutes of leaving an SAA will need such maps to remove the CR
persistence from the science images. Each observation will need its
own CRMAP, as different SAA passages leave different imprints on the
NICMOS detectors.

ACS/WFC 10342

Hubble Heritage Observations of NGC 1300

Observing NGC1300 in four bands for Hubble Heritage project.

ACS/WFC 10235

Dark vs. luminous matter in the CenA/M83 galaxy complex

The distribution of dark vs. luminous matter on scales of 0.1-1.0 Mpc
remains poorly understood. For a nearby group, the total mass can be
determined from the resolution WFPC2/F658N images to be taken at two
different epochs. Given the radius of "the zero-velocity surface",
which separates the group from the general Hubble flow. This new
method requires the measurement of accurate distances and radial
velocities of galaxies around the group, but gives total mass
estimates independent of assumptions about the state of relaxation or
orbital characteristics. The mass pertains to the group at the full
scale to which it is bound. Upon application in several nearest
groups, the method yields mass estimates in agreement with the sum of
the virial masses of subcomponents. However, the typical total M/L
ratio for the nearby groups of ~30 Mo/Lo implies a local mean density
of matter which is only 1/7 the canonical global density . The nearby
complex of galaxies around Cen A and M83 resembles our Local Group by
the dumb-bell concentration of objects around a pair of dominant
galaxies. Accurate distances have been acquired recently for ~20 group
members by the TRGB method using HST. We will measure TRGB distances
to the 17 remaining galaxies in the region. These observations will
constrain the dynamical state of the halo surrounding the nearest
giant E-galaxy Cen A, providing a comparison with the halos of the
nearest spirals.

ACS/WFC/WFPC2 10227

Globular Cluster Systems of Giant, Post-Starburst Shell Ellipticals

Mergers seem to have played a major role in determining the shapes and
dynamics of elliptical galaxies. A few galactic mergers still occur
and offer valuable clues to past evolutionary processes. Young
globular clusters formed during mergers hold strong promise for
age-dating such events, besides helping shed light on the
cluster-formation process itself. With young globulars in ongoing
mergers and ~0.5 Gyr old remnants now well studied {NGC 4038/39, 3256,
7252, and 3921}, we propose to observe 4 bona fide ellipticals
featuring ripples, tidal tails as well as post-starburst spectra {E+A
galaxies: strong Balmer absorption}, which are obvious candidates for
having undergone a dissipative merger 1-4 Gyr ago. If the globulars
formed during mergers are formed with a normal IMF, they should still
be around in large numbers in intermediate-age systems. If that is
indeed the case, it would constitute strong evidence in favor of the
scenario in which metal-rich globulars in 'normal' ellipticals are
formed in merging events. We plan to use these ACS observations to {1}
measure high-accuracy {g-I error of 0.1 mag} colors for clusters as
faint as the peak of the luminosity function {LF} of old globulars,
{2} use these colors to separate first- and second-generation
clusters, and {3} determine the LFs of the two kinds of clusters down
to 1.5 mag past the LF peak for old globulars. Deep dithered g&I-band
images form a crucial part of our observing strategy. When combined
with previous HST studies of globulars in mergers, this study will
yield about a dozen globular cluster systems with age estimates,
enough to make meaningful statements about the influence of mergers in
creating "red'', metal-rich globulars in giant E's and the evolution
of the specific frequency of globular clusters during galactic
mergers.

NIC/NIC3 10226

The NICMOS Grism Parallel Survey

We propose to continue managing the NICMOS pure parallel program.
Based on our experience, we are well prepared to make optimal use of
the parallel opportunities. The improved sensitivity and efficiency of
our observations will substantially increase the number of
line-emitting galaxies detected. As our previous work has
demonstrated, the most frequently detected line is Halpha at
0.7z1.9, which provides an excellent measure of current star
formation rate. We will also detect star-forming and active galaxies
in other redshift ranges using other emission lines. The grism
observations will produce by far the best available Halpha luminosity
functions over the crucial--but poorly observed--redshift range where
galaxies appear to have assembled most of their stellar mass. This key
process of galaxy evolution needs to be studied with IR data; we found
that observations at shorter wavelengths appear to have missed a large
fraction of the star-formation in galaxies, due to dust reddening. We
will also obtain deep F110W and F160W images, to examine the space
densities and morphologies of faint red galaxies. In addition to
carrying out the public parallels, we will make the fully reduced and
calibrated images and spectra available on-line, with some
ground-based data for the deepest parallel fields included.

NIC1 10208

NICMOS Differential Imaging Search for Planetary Mass Companions to
Nearby Young Brown Dwarfs

We propose to use the differential spectral imaging capability of
HST/NICMOS {NIC1} to search for planetary mass companions. We target
the twelve most nearby {within 30 pc}, isolated {no known close
companion}, and young { 1Gyr} brown dwarfs. All of them have spectral
type L and show signs of Lithium absorption, which clearly proves
their substellar nature and youth. Planetary mass companions with
masses down to 6 Jupiter masses, and at separations larger than 3 A.U.
are bright enough for a direct detection with HST/NICMOS using the
spectral differential imaging technique in two narrow-band filters
placed on and off molecular bands. The proposed project has the
potential to lead to the first direct detection of a planetary mass
object in orbit around a nearby brown dwarf.

ACS/WFC 10207

Star Formation in Damped Lya Galaxies: Testing the Connection with the
Lyman Break Population

The principal challenge of damped Lya {DLA} research is to identify
and study the stellar components of these galaxies. Although two
decades of absorption-line research has yielded the HI gas content,
metallicity, velocity fields, molecular and dust content of these
galaxies only a handful have been studied in emission. Therefore, it
has been very difficult to compare the DLA galaxies with the
successful surveys of high z galaxies discovered in emission {e.g.
Lyman break galaxies; LBG}. This is particularly important given that
DLA systems are the probable precursors to galaxies like the Milky
Way. Because the DLA systems are identified toward bright background
quasars, deep observations at high spatial resolution with astable PSF
are essential and only HST provides the observing capability.
Recently, two major advances have greatly enhanced the prospects for
measuring emission from DLA host galaxies: {1} we have developed a new
spectroscopic technique for inferring the star formation rates {SFR}
of the DLA which enables one to pre-select the brightest candidates;
{2} the high spatial resolution and sensitivity of the ACS represents
a major improvement over previous capabilities. We will obtain deep
V-band images with the ACS of 5 high z DLA with the highest inferred
apparent optical magnitudes. The complete survey will offer a robust
statistical analysis of: {a} the extent and morphology of the DLA star
forming regions; {b} the likelihood that the DLA and LBG correspond to
the same population of protogalaxies; {c} a test of the protogalactic
clump models favored by CDM cosmology. We emphasize this program will
offer a major advance over all previous studies. Finally, we will
complement these HST observations with an extensive observing campaign
{IFU spectroscopy and deep IR imaging} on the Keck, VLT, and Magellan
telescopes to provide the most extensive dataset yet on the physical
properties of high z DLA.

ACS/HRC 10204

Evolution of Light Echoes of SN 1993J

SN 1993J is the nearest SN in the last decade, and only one of seven
objects to produce confirmed light echoes. Our analyses of archival
HST/WFPC2 data revealed that the SN has illuminated at least two
light-echo structures in the galaxy M81. Those echoes appear to define
two sheets of dust, located roughly 260 ly and 770 ly in front of the
SN, which are the first, and most efficient, 3-D probes of the ISM in
M81. The echoes not only reveal the ISM's structure, but also
constrain the density, composition and grain-size of its dust. Echoes
are transient events, and as they change on timescales shorter than a
year, continued monitoring will reveal new illuminated material,
tracing interstellar and circumstellar structure. We propose a modest
and highly efficient campaign by HST to image these and yet
undiscovered echoes toward SN 1993J. Such observations will build the
first direct 3-D map of the ISM within a million cubic parsecs of
M81's spiral arm, and may glimpse the circumstellar environment
affected by the projenitor's mass loss. Such results probe the nature
of extragalactic dust, reveal spatio-kinematic information about the
M81's disk, tightly constrain its internal extinction, and under the
proper circumstances, provide an independent distance measurement to
the host galaxy.

ACS/HRC 10199

The Most Massive Galaxies in the Universe: Double Trouble?

We are proposing an HST snapshot survey of 70 objects with velocity
dispersion larger than 350 km/s, selected from the Sloan Digital Sky
Survey. Potentially this sample contains the most massive galaxies in
the Universe. Some of these objects may be superpositions; HST imaging
is the key to determining if they are single and massive or if they
are two objects in projection. The objects which HST imaging shows to
be single objects are interesting because they potentially harbor the
most massive black holes, and because their existence places strong
constraints on galaxy formation models. When combined with ground
based data already in hand, the objects which HST imaging shows are
superpositions provide valuable information about interaction rates of
early-type galaxies as well as their dust content. They also constrain
the allowed parameter space for models of binary gravitational lenses
{such models are currently invoked to explain discrepancies in the
distribution of lensed image flux ratios and separations}.

ACS/HRC 10185

When does Bipolarity Impose itself on the Extreme Mass Outflows from
AGB Stars? An ACS SNAPshot Survey

Essentially all well-characterized preplanetary nebulae {PPNe} --
objects in transition between the AGB and planetary nebula
evolutionary phases - are bipolar, whereas the mass-loss envelopes of
AGB stars are strikingly spherical. In order to understand the
processes leading to bipolar mass-ejection, we need to know at what
stage of stellar evolution does bipolarity in the mass-loss first
manifest itself? Our previous SNAPshot surveys of a PPNe sample {with
ACS & NICMOS} show that roughly half our targets observed are
resolved, with well-defined bipolar or multipolar morphologies.
Spectroscopic surveys of our sample confirm that these objects have
not yet evolved into planetary nebulae. Thus, the transformation from
spherical to aspherical geometries has already fully developed by the
time these dying stars have become preplanetary nebulae. From this
new and surprising result, we hypothesize that the transformation to
bipolarity begins during the very late AGB phase, and happens very
quickly, just before, or as the stars are evolving off the AGB. We
propose to test this hypothesis quantitatively, through a SNAPshot
imaging survey of very evolved AGB stars which we believe are nascent
preplanetary nebulae; with our target list being drawn from published
lists of AGB stars with detected heavy mass-loss {from millimeter-wave
observations}. This survey is crucial for determining how and when the
bipolar geometry asserts itself. Supporting kinematic observations
using long-slit optical spectroscopy {with the Keck}, millimeter and
radio interferometric observations {with OVRO, VLA & VLBA} are being
undertaken. The results from this survey {together with our previous
work} will allow us to draw general conclusions about the onset of
bipolar mass-ejection during late stellar evolution, and will provide
crucial input for theories of post-AGB stellar evolution. Our survey
will produce an archival legacy of long-standing value for future
studies of dying stars.

ACS/SBC 10183

A Deep Far-UV Search for the Interacting Binary Population in M80

We propose to carry out a deep, far-ultraviolet {FUV}, time-resolved
survey for cataclysmic variables {CVs} and other dynamically-formed
objects in the globular cluster {GC} M80. This will include a search
for FUV counterparts to the 17 Chandra sources in our field of view,
which include 2 LMXBs and 5 X-ray selected CV candidates. Our goal is
to confirm these sources as interacting binaries and find any
additional CVs below the Chandra detection limit. We will achieve this
with 6 orbits of FUV imaging with the ACS/SB, plus one additional
orbit of NUV imaging with ACS/HRC. Since crowding is not a problem in
the FUV, this will yield time-resolved FUV photometry of all blue
objects in the cluster core. Our CV census will be both deep enough to
be essentially complete and ``broad'' enough to involve all of the
following CV characteristics: {1} UV brightness; {2} blue FUV spectral
shape; {3} strong CIV and HeII emission; {4} short time-scale {$sim$
minutes} variability {flickering, WD spin}; {6} intermediate
time-scale {$sim$ hours} variability {orbital variations}; {7} long
time-scale {$sim$ weeks} variability {dwarf nova eruptions}. We will
thus uncover the interacting binary population in M80. In addition,
our survey will detect numerous blue stragglers and hot white dwarfs,
as well as any other blue objects in the central regions of this
cluster.

ACS/HRC 10182

Towards a Comprehensive Understanding of Type Ia Supernovae: The
Necessity of UV Observations

Type Ia supernovae {SNe Ia} are very important to many diverse areas
of astrophysics, from the chemical evolution of galaxies to
observational cosmology which led to the discovery of dark energy and
the accelerating Universe. However, the utility of SNe Ia as
cosmological probes depends on the degree of our understanding of SN
Ia physics, and various systematic effects such as cosmic chemical
evolution. At present, the progenitors of SNe Ia and the exact
explosion mechanisms are still poorly understood, as are evolutionary
effects on SN Ia peak luminosities. Since early-time UV spectra and
light curves of nearby SNe Ia can directly address these questions, we
propose an approach consisting of two observational components: {1}
Detailed studies of two very bright, young, nearby SNe Ia with HST UV
spectroscopy at 13 epochs within the first 1.5 months after discovery;
and {2} studies of correlations with luminosity for five somewhat more
distant Hubble-flow SNe Ia, for which relative luminosities can be
determined with precision, using 8 epochs of HST UV spectroscopy
and/or broad-band imaging. The HST data, along with extensive
ground-based optical to near-IR observations, will be analyzed with
state-of-the-art models to probe SN Ia explosion physics and constrain
the nature of the progenitors. The results will form the basis for the
next phase of precision cosmology measurements using SNe Ia, allowing
us to more fully capitalize on the substantial past {and future}
investments of time made with HST in observations of high-redshift SNe
Ia.

ACS/HRC 10180

Ultracompact Blue Dwarfs: Galaxy Formation in the Local Universe?

Recent observations suggest that very low-mass galaxies in the local
universe are still in the process of formation. To investigate this
issue we propose to obtain deep ACS HRC images in the U, V and I bands
of a sample of 11 "ultracompact" blue dwarf galaxies {UCBDs}
identified in the Sloan Digital Sky Survey. These objects are nearby
{z 0.009}, actively star-forming, and have extremely small angular
and physical sizes {d 6" and D 1 kpc}. They also tend to reside in
voids. Our WFPC2 images of the prototype object of this class, POX
186, reveal this tiny object to have a highly disturbed morphlogy
indicative of a recent {within 10^8 yr} collision between two small {~
100 pc} clumps of stars that could represent the long-sought building
blocks predicted by the Press-Schechter model of hierarchical galaxy
formation. This collision has also triggered the formation of a
"super" star cluster {SSC} at the object's core that may be the
progenitor of a globular cluster. POX 186 thus appears to be a very
small dwarf galaxy in the process of formation. This exciting
discovery strongly motivates HST imaging of a full sample of UCBDs in
order to determine if they have morphologies similar to POX 186. HST
images are essential for resolving the structure of these objects,
including establishing the presence of SSCs. HST also offers the only
way to determine their morphologies in the near UV. The spectra of the
objects available from the SDSS will also allow us to measure their
star formation rates, dust content and metallicities. In addition to
potentially providing the first direct evidence of Press-Schechter
building blocks, these data could yield insight into the relationship
between galaxy and globular cluster formation, and will serve as a
test of the recent "downsizing" model of galaxy formation in which the
least massive objects are the last to form.

NIC2 10177

Solar Systems In Formation: A NICMOS Coronagraphic Survey of
Protoplanetary and Debris Disks

Until recently, despite decades of concerted effort applied to
understanding the formation processes that gave birth to our solar
system, the detailed morphology of circumstellar material that must
eventually form planets has been virtually impossible to discern. The
advent of high contrast, coronagraphic imaging as implemented with the
instruments aboard HST has dramatically enhanced our understanding of
natal planetary system formation. Even so, only a handful of evolved
disks {~ 1 Myr and older} have been imaged and spatially resolved in
light scattered from their constituent grains. To elucidate the
physical processes and properties in potentially planet-forming
circumstellar disks, and to understand the nature and evolution of
their grains, a larger spatially resolved and photometrically reliable
sample of such systems must be observed. Thus, we propose a highly
sensitive circumstellar disk imaging survey of a well-defined and
carefully selected sample of YSOs {1-10 Myr T Tau and HAeBe stars} and
{ app 10 Myr} main sequence stars, to probe the posited epoch of
planetary system formation, and to provide this critically needed
imagery. Our resolved images will shed light on the spatial
distributions of the dust in these thermally emissive disks. In
combination with their long wavelength SEDs the physical properties of
the grains will be discerned, or constrained by our photometrically
accurate surface brightness sensitivity limits for faint disks which
elude detection. Our sample builds on the success of the exploratory
GTO 7233 program, using two-roll per orbit PSF-subtracted NICMOS
coronagraphy to provide the highest detection sensitivity to the
smallest disks around bright stars which can be imaged with HST. Our
sample will discriminate between proposed evolutionary scenarios while
providing a legacy of cataloged morphologies for interpreting mid- and
far-IR SEDs that the recently launched Spitzer Space Telescope will
deliver.

NIC2 10169

Star Formation in Luminous Infrared Galaxies: giant HII Regions and
Super Star Clusters

Luminous Infrared Galaxies {LIRGs, LIR = 10^11-10^12Lsol} and
Ultraluminous Infrared Galaxies {LIR10^12Lsol} account for
approximately 75% of all the galaxies detected in the mid-infrared in
the redshift range z=0-1.5. In the local universe it is found that
LIRGs are predominantly powered by intense star formation {SF}.
However, the physical conditions and processes governing such dramatic
activity over scales of tens to a few hundred parsecs are poorly
known. In the last decade HST has been playing a significant role,
mainly with the discovery of super star clusters {SSCs}, and more
recently, giant HII regions. Based on observations of a few LIRGs, we
found that these giant HII regions and associated SSCs appear to be
more common in LIRGs than in normal galaxies, and may dominate the
star formation activity in LIRGs. A larger sample is required to
address fundamental questions. We propose an HST/NICMOS targeted
campaign of a volume limited sample {v5200km/s} of 24 LIRGs. This
proposal will probe the role of giant HII regions in the overall
energetics of the current star formation, their relation to SSCs, and
the dependence of star formation properties on other parameters of
LIRGs. Such detailed knowledge of the SF properties of LIRGs in the
local universe is essential for understanding galaxies at high
redshift.

FGS 10106

An Astrometric Calibration of the Cepheid Period-Luminosity Relation

We propose to measure the parallaxes of 10 Galactic Cepheid variables.
When these parallaxes {with 1-sigma precisions of 10% or better} are
added to our recent HST FGS parallax determination of delta Cep
{Benedict et al 2002}, we anticipate determining the Period-Luminosity
relation zero point with a 0.03 mag precision. In addition to
permitting the test of assumptions that enter into other Cepheid
distance determination techniques, this calibration will reintroduce
Galactic Cepheids as a fundamental step in the extragalactic distance
scale ladder. A Period-Luminosity relation derived from solar
metallicity Cepheids can be applied directly to extragalactic solar
metallicity Cepheids, removing the need to bridge with the Large
Magellanic Cloud and its associated metallicity complications.

FGS 10103

FGS Astrometry of a Star Hosting an Extrasolar Planet: The Mass of
Upsilon Andromedae d

We propose observations with HST/FGS to determine the astrometric
elements {perturbation orbit semimajor axis and inclination} produced
by the outermost extra-solar planet orbiting the F8V star Upsilon
Andromedae. These observations will permit us to determine the actual
mass of the planet by providing the presently unknown sin i factor
intrinsic to the radial velocity method which discovered this object.
An inclination, i = 30degrees, within the range of one very low
precision determination using reanalyzed HIPPARCOS intermediate data
products, would produce the observed radial velocity amplitude, K = 66
ms with a companion mass of ~8 M_Jupiter. Such a mass would induce in
Upsilon Andromedae a perturbation semi-major axis, Alpha = 0arcs0012,
easily within the reach of HST/FGS fringe tracking astrometry. The
proposed observations will yield a planetary mass, rather than, as
previous investigations have done, only suggest a planetary mass
companion.

WFPC2 10071

WFPC2 CYCLE 12 Supplemental Darks Part 3/3

This dark calibration program obtains 3 dark frames every day to
provide data for monitoring and characterizing the evolution of hot
pixels.

ACS/HRC/WFC 10061

CCD Daily Monitor

This program consists of basic tests to monitor, the read noise, the
development of hot pixels and test for any source of noise in ACS CCD
detectors. This programme will be executed once a day for the entire
lifetime of ACS.

ACS/HRC 10050

ACS Earth Flats

High signal sky flats will be obtained by observing the bright Earth
with the HRC and WFC. These observations will be used to verify the
accuracy of the flats currently used by the pipeline and will provide
a comparison with flats derived via other techniques: L-flats from
stellar observations, sky flats from stacked GO observations, and
internal flats using the calibration lamps. Weekly coronagraphic
monitoring is required to assess the changing position of the spots.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.)

HSTAR 9547: GSACQ(2,1,2) results in finelock backup (1,0,1) at AOS.The
GSacq(23,1,2) scheduled at 269/17:16:37 - 17:24:39 resulted to
finelock backup (1,0,1) at AOS, using FGS1 due to scan step limit
exceeded on FGS2. Prior FM Updates at 269/17:11:07, and 269/17:13:52
were successful with good attitude error vectors. Subsequent MAP at
269/17:24:53 had 3-axis (RSS) value ~ 10.000 (arcsec). Possible
Observation affected: ACS 193. Under investigation.

COMPLETED OPS REQs:
17279-0 OPS O6400Q1 CCL Quick Update @ 268/1541z

OPS NOTES EXECUTED:
0916-0 Tabulation of Slew Attitude Error (Miss-distance) @ 271/0117z
0900-1 COMMAND PROBLEM @ 271/0449z


SCHEDULED SUCCESSFUL FAILURE TIMES
FGS Gsacq 30 30
FGS Reacq 12 12
FHST Update 55 55
LOSS of LOCK

SIGNIFICANT EVENTS: None


 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
EVOLUTION DEAD AT AGE 126 -- R.I.P. Ed Conrad Astronomy Misc 4 August 21st 04 12:01 AM
Monitoring NASA Daily ISS Report JimO Space Station 2 June 1st 04 10:33 PM


All times are GMT +1. The time now is 09:12 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.