A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Astronomy Misc
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

VICTORIOUS EINSTEIN OR VICTORIOUS NEWTON ?



 
 
Thread Tools Display Modes
  #1  
Old November 19th 13, 06:56 AM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default VICTORIOUS EINSTEIN OR VICTORIOUS NEWTON ?

http://news.sciencemag.org/space/201...nsteins-theory
"Galaxy Clusters Validate Einstein's Theory (...) The researchers, led by Radek Wojtak of the Niels Bohr Institute at the University of Copenhagen, set out to test a classic prediction of general relativity: that light will lose energy as it is escaping a gravitational field. The stronger the field, the greater the energy loss suffered by the light. As a result, photons emitted from the center of a galaxy cluster - a massive object containing thousands of galaxies - should lose more energy than photons coming from the edge of the cluster because gravity is strongest in the center. (...) The effect is known as gravitational redshifting. (...) David Spergel, an astrophysicist at Princeton University, compliments Wojtak and his colleagues on "cleverly combining" a large cluster data set to detect a "subtle effect." Spergel says, "This is another victory for Einstein. ... This cluster test suggests that we do live in a strange universe with dark matter and dark energy, but one in which Einstein's theory of gravity is valid on large scales."

More precise measurements of the gravitational redshift, as those performed in the Pound-Rebka experiment, confirm Newton's emission theory of light:

http://www.einstein-online.info/spot...t_white_dwarfs
Albert Einstein Institute: "One of the three classical tests for general relativity is the gravitational redshift of light or other forms of electromagnetic radiation. However, in contrast to the other two tests - the gravitational deflection of light and the relativistic perihelion shift -, you do not need general relativity to derive the correct prediction for the gravitational redshift. A combination of Newtonian gravity, a particle theory of light, and the weak equivalence principle (gravitating mass equals inertial mass) suffices. (...) The gravitational redshift was first measured on earth in 1960-65 by Pound, Rebka, and Snider at Harvard University..."

http://courses.physics.illinois.edu/...ctures/l13.pdf
University of Illinois at Urbana-Champaign: "Consider a falling object. ITS SPEED INCREASES AS IT IS FALLING. Hence, if we were to associate a frequency with that object the frequency should increase accordingly as it falls to earth. Because of the equivalence between gravitational and inertial mass, WE SHOULD OBSERVE THE SAME EFFECT FOR LIGHT. So lets shine a light beam from the top of a very tall building. If we can measure the frequency shift as the light beam descends the building, we should be able to discern how gravity affects a falling light beam. This was done by Pound and Rebka in 1960. They shone a light from the top of the Jefferson tower at Harvard and measured the frequency shift. The frequency shift was tiny but in agreement with the theoretical prediction. Consider a light beam that is travelling away from a gravitational field. Its frequency should shift to lower values.. This is known as the gravitational red shift of light."

That is, just like the speed of any material object, the speed of light increases as light is falling in a gravitational field and decreases if the light is travelling away from the gravitational field. The relevant equation given by Newton's emission theory of light is:

c' = c(1±gh/c^2)

and the frequency shift measured by Pound and Rebka unequivocally confirmed the emission theory's prediction:

f' = f(1±gh/c^2)

An important implication is that the gravitational redshift of the light coming to the Earth from distant astronomical objects is due to the simple fact that the speed of that light (relative to the Earth) is decreased.

According to general relativity, the speed of light varies twice as fast as the speed of ordinary matter in a gravitational field: c'=c(1±2gh/c^2).. This variation is obviously incompatible with the frequency shift measured by Pound and Rebka:

http://poincare.matf.bg.ac.rs/~rvikt..._Cosmology.pdf
Relativity, Gravitation, and Cosmology, T. Cheng

p.49: This implies that the speed of light as measured by the remote observer is reduced by gravity as

c(r) = (1 + phi(r)/c^2)c (3.39)

Namely, the speed of light will be seen by an observer (with his coordinate clock) to vary from position to position as the gravitational potential varies from position to position.

p.93: Namely, the retardation of a light signal is twice as large as that given in (3.39)

c(r) = (1 + 2phi(r)/c^2)c (6.28)
________________________________________________
[end of quotation]

Equation (3.39) in the quotation above gives the variation of the speed of light with the gravitational potential predicted by Newton's emission theory of light.

Equation (6.28) in the quotation above gives the variation of the speed of light with the gravitational potential predicted by Einstein's general relativity. Note the factor 2 on the potential term. This factor makes the general relativity's prediction incompatible with the frequency variation f(r)=(1+phi(r)/c^2)f measured in the Pound-Rebka experiment.

See also:

http://www.speed-light.info/speed_of_light_variable.htm
"Einstein wrote this paper in 1911 in German. (...) ...you will find in section 3 of that paper Einstein's derivation of the variable speed of light in a gravitational potential, eqn (3). The result is: c'=c0(1+phi/c^2) where phi is the gravitational potential relative to the point where the speed of light co is measured. (...) You can find a more sophisticated derivation later by Einstein (1955) from the full theory of general relativity in the weak field approximation. (...) Namely the 1955 approximation shows a variation in km/sec twice as much as first predicted in 1911."

http://www.ita.uni-heidelberg.de/res...s/JeruLect.pdf
LECTURES ON GRAVITATIONAL LENSING, RAMESH NARAYAN AND MATTHIAS BARTELMANN, p. 3: " The effect of spacetime curvature on the light paths can then be expressed in terms of an effective index of refraction n, which is given by (e.g. Schneider et al. 1992):
n = 1-(2/c^2)phi = 1+(2/c^2)|phi|
Note that the Newtonian potential is negative if it is defined such that it approaches zero at infinity. As in normal geometrical optics, a refractive index n1 implies that light travels slower than in free vacuum. Thus, the effective speed of a ray of light in a gravitational field is:
v = c/n ~ c-(2/c)|phi| "

http://www.mathpages.com/rr/s6-01/6-01.htm
"Specifically, Einstein wrote in 1911 that the speed of light at a place with the gravitational potential phi would be c(1+phi/c^2), where c is the nominal speed of light in the absence of gravity. In geometrical units we define c=1, so Einstein's 1911 formula can be written simply as c'=1+phi. However, this formula for the speed of light (not to mention this whole approach to gravity) turned out to be incorrect, as Einstein realized during the years leading up to 1915 and the completion of the general theory. (...) ...we have c_r =1+2phi, which corresponds to Einstein's 1911 equation, except that we have a factor of 2 instead of 1 on the potential term."

Pentcho Valev
  #2  
Old November 19th 13, 09:59 PM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default VICTORIOUS EINSTEIN OR VICTORIOUS NEWTON ?

http://books.google.com/books?id=JokgnS1JtmMC
"Relativity and Its Roots" By Banesh Hoffmann, p.92: "There are various remarks to be made about this second principle. For instance, if it is so obvious, how could it turn out to be part of a revolution - especially when the first principle is also a natural one? Moreover, if light consists of particles, as Einstein had suggested in his paper submitted just thirteen weeks before this one, the second principle seems absurd: A stone thrown from a speeding train can do far more damage than one thrown from a train at rest; the speed of the particle is not independent of the motion of the object emitting it. And if we take light to consist of particles and assume that these particles obey Newton's laws, they will conform to Newtonian relativity and thus automatically account for the null result of the Michelson-Morley experiment without recourse to contracting lengths, local time, or Lorentz transformations. Yet, as we have seen, Einstein resisted the temptation to account for the null result in terms of particles of light and simple, familiar Newtonian ideas, and introduced as his second postulate something that was more or less obvious when thought of in terms of waves in an ether. If it was so obvious, though, why did he need to state it as a principle? Because, having taken from the idea of light waves in the ether the one aspect that he needed, he declared early in his paper, to quote his own words, that "the introduction of a 'luminiferous ether' will prove to be superfluous."

Judging from the Michelson-Morley experiment: victorious Einstein or victorious Newton? In 1887 the Michelson-Morley experiment UNEQUIVOCALLY confirmed the assumption that the speed of light varies with the speed of the emitter (c'=c+v). That is, at that time, Newton's emission theory of light was the only existing theory able to explain the null result of the experiment.. Then FitzGerald, Lorentz and Einstein abused reality by replacing the true Newtonian assumption with its antithesis - the false assumption that the speed of light is independent of the speed of the emitter (c'=c). They also devised an ad hoc protective belt - "contracting lengths, local time, or Lorentz transformations" - that quite successfully deflected refuting evidence from the false assumption:

http://bertie.ccsu.edu/naturesci/PhilSci/Lakatos.html
"Lakatos distinguished between two parts of a scientific theory: its "hard core" which contains its basic assumptions (or axioms, when set out formally and explicitly), and its "protective belt", a surrounding defensive set of "ad hoc" (produced for the occasion) hypotheses. (...) In Lakatos' model, we have to explicitly take into account the "ad hoc hypotheses" which serve as the protective belt. The protective belt serves to deflect "refuting" propositions from the core assumptions..."

http://marxsite.com/LK1.htm
Imre Lakatos, Falsification and the Methodology of Scientific Research Programmes: "All scientific research programmes may be characterized by their 'hard core'. The negative heuristic of the programme forbids us to direct the modus tollens at this 'hard core'. Instead, we must use our ingenuity to articulate or even invent 'auxiliary hypotheses', which form a protective belt around this core, and we must redirect the modus tollens to these. It is this protective belt of auxiliary hypotheses which has to bear the brunt of tests and get adjusted and readjusted, or even completely replaced, to defend the thus-hardened core."

Conclusion: Judging from the Michelson-Morley experiment, victorious Newton and defeated Einstein!

Pentcho Valev
  #3  
Old November 20th 13, 10:11 PM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default VICTORIOUS EINSTEIN OR VICTORIOUS NEWTON ?

http://www.cmmp.ucl.ac.uk/~ahh/teach...24n/lect19.pdf
Tony Harker, University College London: "The Doppler Effect: Moving sources and receivers. The phenomena which occur when a source of sound is in motion are well known. The example which is usually cited is the change in pitch of the engine of a moving vehicle as it approaches. In our treatment we shall not specify the type of wave motion involved, and our results will be applicable to sound or to light. (...) Now suppose that the observer is moving with a velocity Vo away from the source. (....) If the observer moves with a speed Vo away from the source (...), then in a time t the number of waves which reach the observer are those in a distance (c-Vo)t, so the number of waves observed is (c-Vo)t/lambda, giving an observed frequency f'=f(1-Vo/c) when the observer is moving away from the source at a speed Vo."

If in a time t the number of waves which reach the observer are those in a distance (c-Vo)t, then, according to Newton's emission theory of light, the speed of the waves relative to the observer is:

c' = (c - Vo)t/t = c - Vo

According to Einstein's special relativity, the speed of the waves relative to the observer is:

c' = (c - Vo)t/t = c - Vo = c

It seems that in this case we have victorious Einstein and defeated Newton:

http://img15.hostingpics.net/pics/86...uletableau.jpg

Pentcho Valev
  #4  
Old November 22nd 13, 09:58 AM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default VICTORIOUS EINSTEIN OR VICTORIOUS NEWTON ?

An unaccustomed burst of honesty in 1909:

http://en.wikisource.org/wiki/The_De...e_of_Radiation
Albert Einstein: "A large body of facts shows undeniably that light has certain fundamental properties that are better explained by Newton's emission theory of light than by the oscillation theory. For this reason, I believe that the next phase in the development of theoretical physics will bring us a theory of light that can be considered a fusion of the oscillation and emission theories."

An unaccustomed burst of honesty nowadays:

https://webspace.utexas.edu/aam829/1/m/Relativity.html
Alberto Martinez: "Does the speed of light depend on the speed of its source? Before formulating his theory of special relativity, Albert Einstein spent a few years trying to formulate a theory in which the speed of light depends on its source, just like all material projectiles. Likewise, Walter Ritz outlined such a theory, where none of the peculiar effects of Einstein's relativity would hold. By 1913 most physicists abandoned such efforts, accepting the postulate of the constancy of the speed of light. Yet five decades later all the evidence that had been said to prove that the speed of light is independent of its source had been found to be defective."

https://webspace.utexas.edu/aam829/1...tzEinstein.pdf
Alberto Martinez: "In sum, Einstein rejected the emission hypothesis prior to 1905 not because of any direct empirical evidence against it, but because it seemed to involve too many theoretical and mathematical complications.. By contrast, Ritz was impressed by the lack of empirical evidence against the emission hypothesis, and he was not deterred by the mathematical difficulties it involved. It seemed to Ritz far more reasonable to assume, in the interest of the "economy" of scientific concepts, that the speed of light depends on the speed of its source, like any other projectile, rather than to assume or believe, with Einstein, that its speed is independent of the motion of its source even though it is not a wave in a medium; that nothing can go faster than light; that the length and mass of any body varies with its velocity; that there exist no rigid bodies; that duration and simultaneity are relative concepts; that the basic parallelogram law for the addition of velocities is not exactly valid; and so forth. Ritz commented that "it is a curious thing, worthy of remark, that only a few years ago one would have thought it sufficient to refute a theory to show that it entails even one or another of these consequences...."

Pentcho Valev
 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
LEE SMOLIN AGAINST EINSTEIN AND NEWTON Pentcho Valev Astronomy Misc 2 March 8th 13 06:27 PM
NEWTON CHALLENGES EINSTEIN Pentcho Valev Astronomy Misc 64 September 24th 10 09:17 AM
FROM NEWTON TO EINSTEIN OR FROM EINSTEIN TO NEWTON? Pentcho Valev Astronomy Misc 3 September 1st 07 01:07 PM
Question: Are Muslims Always Victorious? Gary Rumain Misc 5 February 2nd 07 08:10 PM


All times are GMT +1. The time now is 07:16 AM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.