A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily 3514



 
 
Thread Tools Display Modes
  #1  
Old December 22nd 03, 03:27 PM
Dave
external usenet poster
 
Posts: n/a
Default Daily 3514

HUBBLE SPACE TELESCOPE

DAILY REPORT # 3514

PERIOD COVERED: DOYs 353-355

OBSERVATIONS SCHEDULED

NIC3 9999

The COSMOS 2-Degree ACS Survey NICMOS Parallels

The COSMOS 2-Degree ACS Survey NICMOS Parallels. This program is a
companion to program 9822.

ACS 9984

Cosmic Shear With ACS Pure Parallels

Small distortions in the shapes of background galaxies by foreground
mass provide a powerful method of directly measuring the amount and
distribution of dark matter. Several groups have recently detected
this weak lensing by large-scale structure, also called cosmic shear.
The high resolution and sensitivity of HST/ACS provide a unique
opportunity to measure cosmic shear accurately on small scales. Using
260 parallel orbits in Sloan textiti {F775W} we will measure for the
first time: beginlistosetlength sep0cm setlengthemsep0cm setlength
opsep0cm em the cosmic shear variance on scales 0.7 arcmin, em the
skewness of the shear distribution, and em the magnification effect.
endlist Our measurements will determine the amplitude of the mass
power spectrum sigma_8Omega_m^0.5, with signal-to-noise {s/n} ~ 20,
and the mass density Omega_m with s/n=4. They will be done at small
angular scales where non-linear effects dominate the power spectrum,
providing a test of the gravitational instability paradigm for
structure formation. Measurements on these scales are not possible
from the ground, because of the systematic effects induced by PSF
smearing from seeing. Having many independent lines of sight reduces
the uncertainty due to cosmic variance, making parallel observations
ideal.

ACS/HRC/WFC 9884

Dwarf Elliptical Galaxies in Nearby Groups: Stellar Populations and
Abundances

The M81 group is of the nearest galaxy groups, but its properties are
quite different from the Local Group, providing a different
evolutionary environment for its member galaxies. This team has been
studying M81-group analogs to Local Group dwarf elliptical {dE}
galaxies. We observed two M81-group dEs with WFPC2: the results were
published in Caldwell et al. {1998}. These observations revealed the
upper two magnitudes of the red giant branch, yielding distance via
the luminosity of the red giant branch tip, mean abundance via the
mean giant branch color and first assessment of the star formation
history via the frequency of occurrence of upper-AGB stars. Despite
the different environment, the two M81-group dEs follow the Local
Group {absolute magnitude, mean abundance} relation. But without data
for additional dEs in nearby groups, particularly at higher
luminosities, we can't definitely say whether this relation is
universal or not. Establishing the answer to this question is vital
because the relation is fundamental to theories of dE formation within
dark matter halos, and the general applicability of these theories
requires demonstration that the relation isn't strongly influenced by
environment. This proposal requests ACS/WFC observations of five
M81-group dEs to resolve this question.

NIC/NIC3 9865

The NICMOS Parallel Observing Program

We propose to continue managing the NICMOS pure parallel program.
Based on our experience, we are well prepared to make optimal use of
the parallel opportunities. The improved sensitivity and efficiency of
our observations will substantially increase the number of
line-emitting galaxies detected. As our previous work has
demonstrated, the most frequently detected line is Halpha at
0.7z1.9, which provides an excellent measure of current star
formation rate. We will also detect star-forming and active galaxies
in other redshift ranges using other emission lines. The grism
observations will produce by far the best available Halpha luminosity
functions over the crucial--but poorly observed--redshift range where
galaxies appear to have assembled most of their stellar mass. This key
process of galaxy evolution needs to be studied with IR data; we found
that observations at shorter wavelengths appear to have missed a large
fraction of the star-formation in galaxies, due to dust reddening. We
will also obtain deep F110W and F160W images, to examine the space
densities and morphologies of faint red galaxies. In addition to
carrying out the public parallels, we will make the fully reduced and
calibrated images and spectra available on-line, with some
ground-based data for the deepest parallel fields included.

ACS/WFC 9860

ESSENCE: Measuring the Dark Energy Equation of State

The accelerating universe appears to be dominated by a dark energy
with a significant negative pressure. The ratio of the pressure to
density of this mysterious energy {its equation of state} is an
observable which can differentiate between the proliferating candidate
theories. We propose to estimate the dark energy equation of state by
observing Type Ia supernovae at redshifts near z=0.7 with HST in
concert with the on-going ESSENCE NOAO Survey program that is
discovering and studying supernovae between 0.3z0.8. We show that an
interesting constraint on the equation of state can be made with
supernovae observed at modest redshifts given the current knowledge of
the matter density. We will follow 10 Type Ia supernovae discovered
from the ground and passed to HST without disrupting its schedule. The
full data set will constrain the equation of state to 10% and strictly
limit the range of possible dark energy models. In keeping with the
ESSENCE policy, these observations will available to the community
immediately.

STIS/CCD 9849

AGN Black Hole Masses from Stellar Dynamics

We propose to measure the black-hole masses in two
reverberation-mapped Seyfert 1 galaxies, NGC 3227 and NGC 4151, by
using STIS spectroscopic observations of the Ca II triplet absorption
features in the nuclear stellar spectra of these sources. The
observations will be carried out on a TOO basis when the active nuclei
are faint, thus mitigating the problem of contamination of the
starlight component by the scattered light from the active nucleus.
These observations will enable the first direct comparison of
black-hole masses determined from stellar dynamics {the most
frequently used method for quiescent galaxies} with those determined
by reverberation mapping {the most frequently used method for active
galaxies}.

ACS/WFC/WFPC2 9822

The COSMOS 2-Degree ACS Survey

We will undertake a 2 square degree imaging survey {Cosmic Evolution
Survey -- COSMOS} with ACS in the I {F814W} band of the VIMOS
equatorial field. This wide field survey is essential to understand
the interplay between Large Scale Structure {LSS} evolution and the
formation of galaxies, dark matter and AGNs and is the one region of
parameter space completely unexplored at present by HST. The
equatorial field was selected for its accessibility to all
ground-based telescopes and low IR background and because it will
eventually contain ~100, 000 galaxy spectra from the VLT-VIMOS
instrument. The imaging will detect over 2 million objects with I 27
mag {AB, 10 sigma}, over 35, 000 Lyman Break Galaxies {LBGs} and
extremely red galaxies out to z ~ 5. COSMOS is the only HST project
specifically designed to probe the formation and evolution of
structures ranging from galaxies up to Coma-size clusters in the epoch
of peak galaxy, AGN, star and cluster formation {z ~0.5 to 3}. The
size of the largest structures necessitate the 2 degree field. Our
team is committed to the assembly of several public ancillary datasets
including the optical spectra, deep XMM and VLA imaging, ground-based
optical/IR imaging, UV imaging from GALEX and IR data from SIRTF.
Combining the full-spectrum multiwavelength imaging and spectroscopic
coverage with ACS sub-kpc resolution, COSMOS will be Hubble's ultimate
legacy for understanding the evolution of both the visible and dark
universe.

ACS/WFC/WFPC2 9810

Accurate and Robust Calibration of the Extragalactic Distance Scale
with the Maser Galaxy NGC4258

The extragalactic distance scale {EDS} is defined by a comparison of
Cepheid Period-Luminosity {PL} relations for nearby galaxies and the
LMC, whose uncertain distance is thereby the SOLE anchor. Studies of
maser sources orbiting the central black hole in the galaxy NGC4258
have provided the most accurate extragalactic distance ever {7.2+/-
0.5Mpc}. Since this distance is well determined and based on GEOMETRIC
arguments, NGC4258 can provide a much needed new anchor for the EDS.
We propose multi-epoch BVIH observations of NGC4258 in order to
discover about 100 Cepheids and to characterize their light curves
with 2-3 times greater accuracy than was previously possible with
WFPC2. At 90 orbits {48 in Cycle 12; 42 in Cycle 13}, this is a
relatively large program. However, the result will have a major impact
on the EDS, and substantial attention must be paid to characterization
and minimization of systematic errors, as from metallicity, crowding,
and blending. The resulting dataset will be the most complete for
Cepheids in any galaxy yet studied with HST. In an ongoing NASA-funded
program {OSS-SARA}, we are using new analysis techniques and radio
data to reduce uncertainty in the geometric distance to 3% {0.07
mag}. With this improved geometric distance and the BVIH data, we will
be able to calculate the zero point of the PL relation ROBUSTLY to 4%
{0.09 mag}.

STIS 9786

The Next Generation Spectral Library

We propose to continue the Cycle 10 snapshot program to produce a Next
Generation Spectral Library of 600 stars for use in modeling the
integrated light of galaxies and clusters. This program is using the
low dispersion UV and optical gratings of STIS. The library will be
roughly equally divided among four metallicities, very low {[Fe/H] lt
-1.5}, low {[Fe/H] -1.5 to -0.5}, near-solar {[Fe/H] -0.3 to 0.1}, and
super-solar {[Fe/H] gt 0.2}, well-sampling the entire HR-diagram in
each bin. Such a library will surpass all extant compilations and have
lasting archival value, well into the Next Generation Space Telescope
era. Because of the universal utility and community-broad nature of
this venture, we waive the entire proprietary period.

WFPC2 9712

Pure Parallel Near-UV Observations with WFPC2 within High-Latitude ACS
Survey Fields

In anticipation of the allocation of ACS high-latitude imaging
survey{s}, we request a modification of the dfault pure parallel
program for those WFPC2 parallels that fall within the ACS survey
field. Rather than duplicate the red bands which will be done much
better with ACS, we propose to observe in the near-ultraviolet F300W
filter. These data will enable study of the rest-frame ultraviolet
morphology of galaxies at 0z1. We will determine the morphological
k-correction, and the location of star formation within galaxies,
using a sample that is likely to be nearly complete with
multi-wavelength photometry and spectroscopic redshifts. The results
can be used to interpret observations of higher redshift galaxies by
ACS.

WFPC2 9709

POMS Test Proposal: WFII parallel archive proposal

This is the generic target version of the WFPC2 Archival Pure Parallel
program. The program will be used to take parallel images of random
areas of the sky, following the recommendations of the 2002 Parallels
Working Group.

ACS/WFC 9575

Default {Archival} Pure Parallel Program.

The Advanced Camera for Surveys (WFC) was used to test ACS pure
parallels in POMS.

ACS/WFPC2 9488

Cosmic Shear - with ACS Pure Parallel Observations

The ACS, with greater sensitivity and sky coverage, will extend our
ability to measure the weak gravitational lensing of galaxy images
caused by the large scale distribution of dark matter. We propose to
use the ACS in pure parallel {non- proprietary} mode, following the
guidelines of the ACS Default Pure Parallel Program. Using the HST
Medium Deep Survey WFPC2 database we have measured cosmic shear at
arc-min angular scales. The MDS image parameters, in particular the
galaxy orientations and axis ratios, are such that any residual
corrections due to errors in the PSF or jitter are much smaller than
the measured signal. This situation is in stark contrast with
ground-based observations. We have also developed a statistical
analysis procedure to derive unbiased estimates of cosmic shear from a
large number of fields, each of which has a very small number of
galaxies. We have therefore set the stage for measurements with the
ACS at fainter apparent magnitudes and smaller, 10 arc-second scales
corresponding to larger cosmological distances. We will adapt existing
MDS WFPC2 maximum likelihood galaxy image analysis algorithms to work
with the ACS. The analysis would also yield an online database similar
to that in archive.stsci.edu/mds/

STIS 9435

Systematic Search for Rotation at the Base of Outflows from T Tauri
Stars

We wish to search for rotation signatures in the initial portion
{first 100 AU} of a sample of outflows emanating from T Tauri stars
{TTSs}. This project originates from our detection of systematic
transverse radial velocity shifts in STIS spectra of the DG Tau jet
{Bacciotti et al., 2002}. The shifts, observed in a region where the
flow is already collimated, but has not yet manifestly interacted with
its environment, are consistent with the predictions of magneto-
centrifugal launching models, and may constitute the first observed
indication for rotation in the initial portion of a jet flow. Rotation
is a fundamental ingredient in star formation theories, thus we
propose to confirm the above result by carrying out a systematic
survey in similar flows. We plan to take for each jet a STIS spectrum
in the 6300 -- 6800 Angstrom range, with the slit perpendicular to the
flow direction and at a distance of about 0.''3 from the source {i.e.,
in our targets, 40 -- 70 AU along the jet depending on inclination
angle}. Since the flows are resolved transversely with HST, the
proposed slit orientation allows for the direct detection of
systematic velocity shifts. Where found, we will check for consistency
between the sense of rotation observed and that of the underlying disk
through CO interferometric measurements. As a by-product, estimates of
the excitation conditions across the flow {including ionization
fraction} and of the mass outflow rates will be derived.

STIS/ACS/NICMOS 9430

The Role of Jets in Shaping Planetary Nebulae

Recent CO observations of several planetary nebulae {PN} suggest that
collimated outflows may play a crucial role in the early shaping of
these objects. The idea that jets may be the primary driver of the
early development of some PN represents a major shift in thinking
about the evolution of these objects. In the past, the role of jets
has been considered secondary to the interacting winds scenario, the
standard model of PN formation. We propose to use the unique
capabilities of HST to access the importance of collimated outflows in
the development of the young PN PK166-06D1 {AFGL 618}. We have chosen
PK166-06D1 for this study because it is in the early stages of PN
formation - the time during which jets would have the greatest impact
on PN development. We propose to use STIS, ACS, and NICMOS to
characterize the collimated outflows present in PK166- 06D1. The goals
of this study a 1} to characterize the interaction of the jets with
the surrounding AGB shell by determining the physical conditions in
the outflows and the interaction regions, 2} to determine the
structure of the surrounding AGB shell using deep optical imaging, 3}
to investigate the origin of the collimated outflows by examining the
central regions of the nebula. We require both the stability and high
spatial resolution capabilities of HST for this project because we
will be investigating the detailed structure of compact regions {
1"}.

NICMOS 8790

NICMOS Post-SAA calibration - CR Persistence Part 1.

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be
non-standard reference files available to users with a USEAFTER
date/time mark.

ACS/WFC 10086

The Ultra Deep Field with ACS

The ACS Ultra Deep Field {UDF} is a survey carried out by using
Director's Discretionary time. The main science driver are galaxy
evolution and cosmology. The primary instrument is the Advanced Camera
for Surveys but WFPC2 and NICMOS will also be used in parallel. The
data will be made public. The UDF consists of a single ultra-deep
field {410 orbits in total} within the CDF-S GOODS area. The survey
will use four filters: F435W {55 orbits}, F606W {55 orbits}, F775W
{150 orbits}, and F850LP {150 orbits}. The F435W {B} and F606W {V}
exposures will be one magnitude deeper than the equivalent HDF
filters. The F775W {I} exposure will be 1.5 magnitude deeper than the
equivalent HDF exposure. The depth in F775W and F850LP is optimized
for searching very red objects - like z=6 galaxies - at the detection
limit of the F850LP image. The pointing will be RA{J2000}=3 32 40.0
and Decl.{J2000}=-27 48 00. These coordinates may change slightly due
to guide star availability and implementation issues. We will attempt
to include in the field both a spectroscopically confirmed z=5.8
galaxy and a spectroscopically confirmed type Ia SN at z=1.3. The
pointing avoids the gaps with the lowest effective exposure on the
Chandra ACIS image of CDFS. This basic structure of the survey
represents a consensus recommendation of a Scientific Advisory
Committee to the STScI Director Steven Beckwith. A local Working Group
is looking in detail at the implementation of the survey.

WFPC2 10082

POMS Test Proposal: WFII backup parallel archive proposal

This is a POMS test proposal designed to simulate scientific plans

WFPC2 10069

WFPC2 CYCLE 12 Supplemental Darks, Part 1/3

This dark calibration program obtains 3 dark frames every day to
provide data for monitoring and characterizing the evolution of hot
pixels.

ACS/HRC/WFC 10042

CCD Daily Monitor

This program consists of basic tests to monitor, the read noise, the
development of hot pixels and test for any source of noise in ACS CCD
detectors. This programme will be executed once a day for the entire
lifetime of ACS.

STIS/CCD 10030

STIS/CCD Spectroscopic Sensitivity Monitor for Cycle 12

Monitor sensitivity of each CCD grating mode to detect any change due
to contamination or other causes.

STIS/CCD 10019

CCD Bias Monitor - Part 1

Monitor the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1,
and 1x1 at gain = 4, to build up high-S/N superbiases and track the
evolution of hot columns.

STIS/CCD 10017

CCD Dark Monitor-Part 1

Monitor the darks for the STIS CCD.

WFPC2/ACS/HRC/WFC 10013

Focus Monitor

The focus of HST is measured from WFPC2/PC and ACS/HRC images of
stars. Multiple exposures are taken in parallel over an orbit to
determine the influence of breathing on the derived mean focus.
Observations are taken of clusters with suitable orientations to
ensure stars appear in all fields.

FGS 10011

Monitoring FGS1r's Interferometric Response as a Function of Spectral
Color

This proposal obtains reference point source Transfer Functions
{S-Curves} for FGS1r through the F583W filter and the F5ND attenuator
at the center position of the FGS1r FOV for a variety of stars of
different spectral types. These Transfer Functions are needed to
support the analysis of GO science data for the study of close and
wide binary star systems and for determining the angular size and
shape of extended sources. This proposal observes stars that have been
observed in previous cycles to monitor the long term evolution of the
FGS1r S-curves. This proposal also {1} monitors the FGS1r Lateral
Color response {using stars Latcol-A and Latcol-B}, {2} calibrates the
"Pos/Trans" bias of a star's position as determined from Transfer mode
and Position mode observations, and {3} calibrates the shift of a
star's centroid when observed with F5ND relative to that when observed
with F583W.

STIS/CCD 10000

STIS Pure Parallel Imaging Program: Cycle 12

This is the default archival pure parallel program for STIS during
cycle 12.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.) None

FGS acquisition 14 for 14,
FGS re-acquisitions 13 for 13,
FHST updates 36 for 36,
no LOLs.


SIGNIFICANT EVENTS: None



 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Monitoring NASA Daily ISS Report JimO Space Station 2 June 1st 04 10:33 PM
JimO Speaks on 'Daily Planet' re Hubble JimO Policy 0 February 11th 04 10:53 PM
Spirit's daily activities schedule? Matti Anttila Policy 0 January 15th 04 08:39 AM
best site for daily schedule of rover activity? bob History 2 January 5th 04 12:16 PM
Investor's Business Daily: Rethinking NASA dougk Policy 1 August 28th 03 12:07 AM


All times are GMT +1. The time now is 09:07 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.