A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily 3825



 
 
Thread Tools Display Modes
  #1  
Old March 28th 05, 04:26 PM
external usenet poster
 
Posts: n/a
Default Daily 3825

HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

DAILY REPORT # 3825

PERIOD COVERED: DOYs 84-86

OBSERVATIONS SCHEDULED

NIC1/NIC2/NIC3 8792

NICMOS Post-SAA calibration - CR Persistence Part 3

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be
non-standard reference files available to users with a USEAFTER
date/time mark. The keyword 'USEAFTER=date/time' will also be added to
the header of each POST-SAA DARK frame. The keyword must be populated
with the time, in addition to the date, because HST crosses the SAA ~8
times per day so each POST-SAA DARK will need to have the appropriate
time specified, for users to identify the ones they need. Both the raw
and processed images will be archived as POST-SAA DARKSs. Generally we
expect that all NICMOS science/calibration observations started within
50 minutes of leaving an SAA will need such maps to remove the CR
persistence from the science images. Each observation will need its
own CRMAP, as different SAA passages leave different imprints on the
NICMOS detectors.

ACS/WFC/WFPC2 10424

The White Dwarf Cooling Age and Dynamical History of the Metal-Poor
Globular Cluster NGC 6397

We propose to determine the white dwarf cooling age in the nearest
metal-poor {[Fe/H]=- 2} globular cluster, NGC 6397. This globular
cluster provides the best opportunity to test the white dwarf cooling
age in such a metal-poor system and at the same time provide a
comparison with the more metal-rich cluster {M4} which we recently
successfully observed with HST. Any {or even no} age difference
between these clusters will be important in understanding the
age-metallicity relation for these systems which reflects the star
formation history in the early Galaxy. The absolute age is an
important cosmological constraint. We expect to be able to detect age
DIFFERENCES between these clusters at the 0.5 Gyr level and absolute
ages should be accurate to 1.0 Gyr. In addition, and in contrast with
M4, NGC 6397 is highly dynamically evolved, has a collapsed core, and
the distribution of its white dwarfs throughout the cluster have
almost certainly been modified by dynamical processes. We are using
N-body simulations specifically developed for this cluster to
understand these modifications and to include their effects in our
measurement of the white dwarf luminosity function and cooling age.
Among the dynamical questions we expect to answer with this proposal
a 1} what was the primordial binary frequency in NGC 6397? 2} can
we explain the high central concentration with a population of massive
white dwarfs and/or neutron stars? 3} do we see sufficient central
binaries to reverse the core collapse of the cluster?

ACS/WFC 10378

ACS Polarimetry Calibration

Observations are made of the Boomerang Nebula {highly polarized
reflection nebula} to calibrate the ACS polarizers.

ACS/HRC/WFC 10370

CCD Hot Pixel Annealing

Hot pixel annealing will continue to be performed once every 4 weeks.
The CCD TECs will be turned off and heaters will be activated to bring
the detector temperatures to about +20C. This state will be held for
approximately 12 hours, after which the heaters are turned off, the
TECs turned on, and the CCDs returned to normal operating condition.
To assess the effectiveness of the annealing, a bias and four dark
images will be taken before and after the annealing procedure for both
WFC and HRC. The HRC darks are taken in parallel with the WFC darks.
The charge transfer efficiency {CTE} of the ACS CCD detectors declines
as damage due to on-orbit radiation exposure accumulates. This
degradation has been closely monitored at regular intervals, because
it is likely to determine the useful lifetime of the CCDs. We will now
combine the annealing activity with the charge transfer efficiency
monitoring and also merge into the routine dark image collection. To
this end, the CTE monitoring exposures have been moved into this
proposal . All the data for this program is acquired using internal
targets {lamps} only, so all of the exposures should be taken during
Earth occultation time {but not during SAA passages}. This program
emulates the ACS pre-flight ground calibration and post-launch SMOV
testing {program 8948}, so that results from each epoch can be
directly compared. Extended Pixel Edge Response {EPER} and First Pixel
Response {FPR} data will be obtained over a range of signal levels for
both the Wide Field Channel {WFC}, and the High Resolution Channel
{HRC}.

ACS/HRC/WFC 10367

ACS CCDs daily monitor- cycle 13 - part 1

This program consists of a set of basic tests to monitor, the read
noise, the development of hot pixels and test for any source of noise
in ACS CCD detectors. The files, biases and dark will be used to
create reference files for science calibration. This programme will be
for the entire lifetime of ACS.

NIC3 10337

The COSMOS 2-Degree ACS Survey NICMOS Parallels

The COSMOS 2-Degree ACS Survey NICMOS Parallels. This program is a
companion to program 10092.

ACS/HRC 10255

A Never Before Explored Phase Space: Resolving Close White Dwarf / Red
Dwarf

We propose an ACS Snapshot imaging survey to resolve a well-defined
sample of highly probable white dwarf plus red dwarf close binaries.
These candidates were selected from a search for white dwarfs with
infrared excess from the 2MASS database. They represent unresolved
systems {separations less than approximately 2" in the 2MASS images}
and are distributed over the whole sky. Our HST+ACS observations will
be sensitive to a separation range {1-20 AU} never before probed by
any means. The proposed study will be the first empirical test of
binary star parameters in the post-AGB phase, and cannot be
accomplished from the ground. By resolving as few as 20 of our ~100
targets with HST, we will be able to characterize the distribution of
orbital semi- major axes and secondary star masses.

ACS/WFC/NIC2 10189

PANS-Probing Acceleration Now with Supernovae

Type Ia supernovae {SNe Ia} provide the most direct evidence for an
accelerating Universe, a result widely attributed to dark energy.
Using HST in Cycle 11 we extended the Hubble diagram with 6 of the 7
highest-redshift SNe Ia known, all at z1.25, providing conclusive
evidence of an earlier epoch of cosmic deceleration. The full sample
of 16 new SNe Ia match the cosmic concordance model and are
inconsistent with a simple model of evolution or dust as alternatives
to dark energy. Understanding dark energy may be the biggest current
challenge to cosmology and particle physics. To understand the nature
of dark energy, we seek to measure its two most fundamental
properties: its evolution {i.e., dw/dz}, and its recent equation of
state {i.e., w{z=0}}. SNe Ia at z1, beyond the reach of the ground
but squarely within the reach of HST with ACS, are crucial to break
the degeneracy in the measurements of these two basic aspects of dark
energy. The SNe Ia we have discovered and measured with HST in Cycle
11, now double the precision of our knowledge of both properties. Here
we propose to quadruple the sample of SNe Ia at z1 in the next two
cycles, complementing on-going surveys from the ground at z1, and
again doubling the precision of dark energy constraints. Should the
current best fit model prove to be the correct one, the precision
expected from the current proposal will suffice to rule out a
cosmological constant at the 99% confidence level. Whatever the
result, these objects will provide the basis with which to extend our
empirical knowledge of this newly discovered and dominant component of
the Universe, and will remain one of the most significant legacies of
HST. In addition, our survey and follow-up data will greatly enhance
the value of the archival data within the target Treasury fields for
galaxy studies.

NIC1/NIC2 10161

Fresh ammonia-ice on Jupiter: The northern equatorial region.

The proposed multi-band imaging of one of the most dynamic regions on
Jupiter will complement recent space-based infrared datasets and will
provide crucial constraints to models of Jovian atmospheric dynamics.
NICMOS is sensitive to the Jovian troposphere at and above the visible
cloud decks. We selected six NICMOS filters with varying levels of
atmospheric opacity to observe cloud features as they rotate from the
central meridian to the limb, a strategy that will maximize the
vertical resolution of our retrievals of cloud heights, haze opacity,
and gaseous ammonia concentration. With these filters and the
excellent NICMOS spatial resolution {nearly an order of magnitude
improvement over Galileo NIMS images of the northern equatorial
region}, we will determine the smaller-scale structure of fresh NH3
clouds and provide cloud heights as constraints for models of
convection and dynamics associated with 5-micron hotspots. HST is
essential for this project, since no other observatory can provide the
necessary spatial resolution, and no ground-based or space-based
telescopes can observe the ammonia bands we have selected.

ACS/WFC 10152

A Snapshot Survey of a Complete Sample of X-ray Luminous Galaxy
Clusters from Redshift 0.3 to 0.7

We propose a public, uniform imaging survey of a well-studied,
complete, and homogeneous sample of X-ray clusters. The sample of 73
clusters spans the redshift range between 0.3-0.7. The samples spans
almost 2 orders of magnitude of X-ray luminosity, where half of the
sample has X-ray luminosities greater than 10^44 erg/s {0.5- 2.0 keV}.
These snapshots will be used to obtain a fair census of the the
morphology of cluster galaxies in the cores of clusters, to detect
radial and tangential arc candidates, to detect optical jet
candidates, and to provide an approximate estimate of the shear signal
of the clusters themselves, and potentially an assessment of the
contribution of large scale structure to lensing shear.

ACS/HRC 10133

HST / Chandra Monitoring of a Dramatic Flare in the M87 Jet

As the nearest galaxy with an optical jet, M87 affords an unparalleled
opportunity to study extragalactic jet phenomena at the highest
resolution. During 2002, HST and Chandra monitoring of the M87 jet
detected a dramatic flare in knot HST-1 located ~1" from the nucleus.
As of late 2003 its brightness has increased twenty-fold in the
optical band, and continues to increase sharply; the X-rays show a
similarly dramatic outburst. In both bands HST-1 now greatly exceeds
the nucleus in brightness. To our knowledge this is the first
incidence of an optical or X-ray outburst from a jet region which is
spatially distinct from the core source; this presents an
unprecedented opportunity to study the processes responsible for
non-thermal variability and the X-ray emission. We propose seven
epochs of monitoring during Cycle 13, as well as seven epochs of
Chandra/ACIS observation {5ksec each}. We also include a brief HRC/ACS
observations that will be used to gather spectral information and map
the magnetic field structure. This monitoring is continued into Cycles
14 and 15. The results of this investigation are of key importance not
only for understanding the nature of the X-ray emission of the M87
jet, but also for understanding flares in blazar jets, which are
highly variable, but where we have never before been able to resolve
the flaring region in the optical or X-rays. These observations will
allow us to test synchrotron emission models for the X-ray outburst,
constrain particle acceleration and loss timescales, and study the jet
dynamics associated with this flaring component. Revisions 6 Oct 2004:
We are replacing STIS visits 1-7 with ACS/HRC observations in new
visits 31- 37.

WFPC2 10132

UV Confirmation of New Quasar Sightlines Suitable for the Study of
Intergalactic Helium

The reionization of intergalactic helium is thought to have occurred
between redshifts of about 3 and 4. The study of HeII Lyman-alpha
absorption towards a half-dozen quasars at 2.7z3.5 demonstrates the
great potential of such probes of the IGM, but the current
critically-small sample limits confidence in resulting cosmological
inferences. The requisite unobscured quasar sightlines to
high-redshift are extremely rare, especially due to severe absorption
in random intervening Lyman-limit systems, but SDSS provides hundreds
of bright, new quasars at such redshifts potentially suitable for HeII
studies. Our cycle 13 SNAP program proposes to verify the UV
detectability of 40 new, bright, z2.9 SDSS quasars, but with special
emphasis on extending helium studies to the highest redshift
sightlines. Our proposed approach has already proven successful, and
additional sightlines will enable follow-up spectral observations to
measure the spectrum and evolution of the ionizing background
radiation, the density of intergalactic baryons, and the epoch of
reionization of the IGM.

ACS/HRC 10094

Mid-Ultraviolet Spectral Templates for Old Stellar Systems

We propose a three-year program to provide both observational and
theoretical mid- ultraviolet {2300A -- 3100A} spectral templates for
interpreting the age and metallicity of globular clusters and
elliptical galaxies from spectra of their integrated light. The mid-UV
is the region most directly influenced by stellar age, and is observed
directly in optical and infrared studies of high-redshift quiescent
systems. The reliability of age and metallicity determinations remains
questionable until non-solar metallicities and abundance ratios are
considered, and stars spanning the color-magnitude diagram are
included, as we propose here. With archival HST STIS spectra we have
improved the list of mid-UV atomic line parameters, then calculated
spectra from first principles which match observed spectra of standard
stars up to one- fourth solar metallicity. We will extend both
observations and calculations to stars of solar metallicity and
beyond, and to those in short-lived stages hotter than the
main-sequence turnoff, stars not currently well-represented in
empirical libraries. The necessary line-list improvements will come
from new high-resolution mid-UV spectra of nine field stars. A key
application of the results of this program will be to the old systems
now being discovered as `Extremely Red Objects' at high redshifts.
Reliable age-dating of these places constraints on the epoch when
large structures first formed in the universe.

ACS/WFC/WFPC2 10092

The COSMOS 2-Degree ACS Survey

We will undertake a 2 square degree imaging survey {Cosmic Evolution
Survey -- COSMOS} with ACS in the I {F814W} band of the VIMOS
equatorial field. This wide field survey is essential to understand
the interplay between Large Scale Structure {LSS} evolution and the
formation of galaxies, dark matter and AGNs and is the one region of
parameter space completely unexplored at present by HST. The
equatorial field was selected for its accessibility to all
ground-based telescopes and low IR background and because it will
eventually contain ~100, 000 galaxy spectra from the VLT-VIMOS
instrument. The imaging will detect over 2 million objects with I 27
mag {AB, 10 sigma}, over 35, 000 Lyman Break Galaxies {LBGs} and
extremely red galaxies out to z ~ 5. COSMOS is the only HST project
specifically designed to probe the formation and evolution of
structures ranging from galaxies up to Coma-size clusters in the epoch
of peak galaxy, AGN, star and cluster formation {z ~0.5 to 3}. The
size of the largest structures necessitate the 2 degree field. Our
team is committed to the assembly of several public ancillary datasets
including the optical spectra, deep XMM and VLA imaging, ground-based
optical/IR imaging, UV imaging from GALEX and IR data from SIRTF.
Combining the full-spectrum multiwavelength imaging and spectroscopic
coverage with ACS sub-kpc resolution, COSMOS will be Hubble's ultimate
legacy for understanding the evolution of both the visible and dark
universe.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.)

HSTAR 9751: Full Maneuver Update (U1,2FM) failure @ 05/084/16:09:56z
The first of two U1,2FM Full Maneuver Updates scheduled at
084/16:09:56 and 084/16:12:41 respectively, failed with error box
results indicating "2FAILED". A single 486 ESB message 901 was
observed at 084/16:10:49. Under investigation.

HSTAR 9752: GSAcq(1,2,1) failed to RGA control @ 5/84/16:15:26 due to
search radius limit exceeded on the primary FGS1. Per PCS/SE, the
image of the secondary guide star location indicates no star at that
location. Ref HSTAR# 9751, the second FM Update at 084/16:12:41 showed
attitude error: V1=41.217, V2=-17.206, V3=-15.626 (arcsec). Subsequent
GSAcq(3,0,3) at 084/17:40:29 was successful. Possible Observations
affected:ACS 189, 190 WFPCII 128,129. Under investigation.

COMPLETED OPS REQs:
17709-0 R/T Map @084/1651z


OPS NOTES EXECUTED: None

SCHEDULED SUCCESSFUL FAILURE TIMES
FGS
Gsacq 34 33 084/1615z
(HSTAR#9752)
FGS Reacq 17 17
FHST
Update 42 41 084/1609z
(HSTAR#9751)
LOSS of LOCK


SIGNIFICANT EVENTS: None



 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
NEW UFO Website: Daily UFO News Paleo-Conservative SETI 2 November 28th 04 04:13 PM
EVOLUTION DEAD AT AGE 126 -- R.I.P. Ed Conrad Astronomy Misc 4 August 21st 04 12:01 AM
Monitoring NASA Daily ISS Report JimO Space Station 2 June 1st 04 10:33 PM
Monitoring NASA Daily ISS Report JimO History 2 June 1st 04 10:33 PM
Spirit's daily activities schedule? Matti Anttila Policy 0 January 15th 04 08:39 AM


All times are GMT +1. The time now is 01:12 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.