A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily Report #4950



 
 
Thread Tools Display Modes
  #1  
Old October 14th 09, 02:52 PM posted to sci.astro.hubble
Cooper, Joe
external usenet poster
 
Posts: 568
Default Daily Report #4950

HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science

DAILY REPORT #4950

PERIOD COVERED: 5am October 13 - 5am October 14, 2009 (DOY 286/09:00z 287/09:00z)

OBSERVATIONS SCHEDULED

NIC1/NIC2/NIC3 11947

Extended Dark Monitoring

This program takes a series of darks to obtain darks (including
amplifier glow, dark current, and shading profiles) for all three
cameras in the read-out sequences used in Cycle 17. A set of 12 orbits
will be observed every two months for a total of 72 orbits for a 12
month Cycle 17. This is a continuation of Cycle 16 program 11330
scaled down by ~80%.

The first orbit (Visit A0) should be scheduled in the NICMOS SMOV
after the DC Transfer Test (11406) and at least 36h before the Filter
Wheel Test (11407). Data download using fast track.

The following 28 orbits (visit A1-N2) should be scheduled AFTER the
SMOV Proposal 11407 (Filter Wheel Test). This is done in order to
monitor the dark current following an adjustment of the NCS set-point.
These visits should be executed until the final temperature is reached
during SMOV.

NIC1/NIC2/NIC3 8795

NICMOS Post-SAA Calibration - CR Persistence Part 6

This is a new procedure proposed to alleviate the CR-persistence
problem of NICMOS. Dark frames will be obtained immediately upon
exiting the SAA contour 23, and every time a NICMOS exposure is
scheduled within 50 minutes of coming out of the SAA. The darks will
be obtained in parallel in all three NICMOS cameras. The post-SAA
darks will be non-standard reference files available to users with a
'Use After' date/time mark. The keyword 'UseAfter=date/time' will also
be added to the header of each post-SAA dark frame. The keyword must
be populated with the time, in addition to the date, because HST
crosses the SAA ~8 times per day, so each post-SAA dark will need to
have the appropriate time specified, for users to identify the ones
they need. Both the raw and processed images will be archived as
post-SAA darks. Generally we expect that all NICMOS
science/calibration observations started within 50 minutes of leaving
an SAA will need such MAPs to remove the CR persistence from the
science images. Each observation will need its own CRMAP, as different
SAA passages leave different imprints on the NICMOS detectors.

NIC2/WFC3/IR 11548

Infrared Imaging of Protostars in the Orion A Cloud: The Role of
Environment in Star Formation

We propose NICMOS and WFC3/IR observations of a sample of 252
protostars identified in the Orion A cloud with the Spitzer Space
Telescope. These observations will image the scattered light escaping
the protostellar envelopes, providing information on the shapes of
outflow cavities, the inclinations of the protostars, and the overall
morphologies of the envelopes. In addition, we ask for Spitzer time to
obtain 55-95 micron spectra of 75 of the protostars. Combining these
new data with existing 3.6 to 70 micron photometry and forthcoming
5-40 micron spectra measured with the Spitzer Space Telescope, we will
determine the physical properties of the protostars such as envelope
density, luminosity, infall rate, and outflow cavity opening angle. By
examining how these properties vary with stellar density (i.e.
clusters vs. groups vs. isolation) and the properties of the
surrounding molecular cloud; we can directly measure how the
surrounding environment influences protostellar evolution, and
consequently, the formation of stars and planetary systems.
Ultimately, this data will guide the development of a theory of
protostellar evolution.

STIS/CCD 11844

CCD Dark Monitor Part 1

The purpose of this proposal is to monitor the darks for the STIS CCD.

STIS/CCD 11846

CCD Bias Monitor-Part 1

The purpose of this proposal is to monitor the bias in the 1x1, 1x2,
2x1, and 2x2 bin settings at gain=1, and 1x1 at gain = 4, to build up
high-S/N superbiases and track the evolution of hot columns.

WFC3/ACS/IR 11142

Revealing the Physical Nature of Infrared Luminous Galaxies at
0.3z2.7 Using HST and Spitzer

We aim to determine physical properties of IR luminous galaxies at
0.3z2.7 by requesting coordinated HST/NIC2 and MIPS 70um
observations of a unique, 24um flux-limited sample with complete
Spitzer mid-IR spectroscopy. The 150 sources investigated in this
program have S(24um) 0.8mJy and their mid-IR spectra have already
provided the majority targets with spectroscopic redshifts
(0.3z2.7). The proposed 150~orbits of NIC2 and 66~hours of MIPS 70um
will provide the physical measurements of the light distribution at
the rest-frame ~8000A and better estimates of the bolometric
luminosity. Combining these parameters together with the rich suite of
spectral diagnostics from the mid-IR spectra, we will (1) measure how
common mergers are among LIRGs and ULIRGs at 0.3z2.7, and establish
if major mergers are the drivers of z1 ULIRGs, as in the local
Universe, (2) study the co-evolution of star formation and blackhole
accretion by investigating the relations between the fraction of
starburst/AGN measured from mid-IR spectra vs. HST morphologies,
L(bol) and z, and (3) obtain the current best estimates of the far-IR
emission, thus L(bol) for this sample, and establish if the relative
contribution of mid-to-far IR dust emission is correlated with
morphology (resolved vs. unresolved).

WFC3/IR 11202

The Structure of Early-type Galaxies: 0.1-100 Effective Radii

The structure, formation and evolution of early-type galaxies is still
largely an open problem in cosmology: how does the Universe evolve
from large linear scales dominated by dark matter to the highly
non-linear scales of galaxies, where baryons and dark matter both play
important, interacting, roles? To understand the complex physical
processes involved in their formation scenario, and why they have the
tight scaling relations that we observe today (e.g. the Fundamental
Plane), it is critically important not only to understand their
stellar structure, but also their dark-matter distribution from the
smallest to the largest scales. Over the last three years the SLACS
collaboration has developed a toolbox to tackle these issues in a
unique and encompassing way by combining new non-parametric strong
lensing techniques, stellar dynamics, and most recently weak
gravitational lensing, with high-quality Hubble Space Telescope
imaging and VLT/Keck spectroscopic data of early-type lens systems.
This allows us to break degeneracies that are inherent to each of
these techniques separately and probe the mass structure of early-type
galaxies from 0.1 to 100 effective radii. The large dynamic range to
which lensing is sensitive allows us both to probe the clumpy
substructure of these galaxies, as well as their low-density outer
haloes. These methods have convincingly been demonstrated, by our
team, using smaller pilot-samples of SLACS lens systems with HST data.
In this proposal, we request observing time with WFC3 and NICMOS to
observe 53 strong lens systems from SLACS, to obtain complete
multi-color imaging for each system. This would bring the total number
of SLACS lens systems to 87 with completed HST imaging and effectively
doubles the known number of galaxy-scale strong lenses. The deep HST
images enable us to fully exploit our new techniques, beat down
low-number statistics, and probe the structure and evolution of early-
type galaxies, not only with a uniform data-set an order of magnitude
larger than what is available now, but also with a fully-coherent and
self-consistent methodological approach!

WFC3/IR 11618

WFC3 Observations of VeLLOs and the Youngest Star Forming Environments

The Cores-to-Disks Spitzer Legacy team has discovered a number of
extremely low luminosity sources embedded deep within nearby ( 300
pc) cores previously thought to be starless. With substellar masses,
these low luminosity sources represent either the youngest low-mass
protostars yet detected or the first embedded brown dwarfs. In either
case, they represent a new observed class of sources referred to as
VeLLOs (Very Low Luminosity Objects). We propose WFC3 F160W
observations of a small sample of these sources, to be combined with
deep ground-based observations at Ks, to address a broad set of issues
concerning VeLLOs and the environments within which they are forming.
First, the morphology of their outflow cavities will be traced,
yielding estimates of the inclinations and opening angles of the
cavities and the evolutionary stages of the VeLLOs. Second, our
observations will reveal background stars seen through the densest
regions of cores harboring these VeLLOs. The color-excesses of the
background stars will yield the highest angular resolution extinction
maps necessary to directly probe the inner density structure of these
cores, found very soon after the onset of collapse, which would
constrain the initial conditions of collapse within these isolated
environments. In addition, we will construct similar maps of the dense
pre-protostellar core L694-2 and the protostellar core B335. These
maps will provide a snapshot of the evolution of the inner density
structure of a core prior to low-mass star formation and soon
thereafter, for comparison with the inner density structure of cores
that have formed VeLLOs. Finally, these extinction maps will enable us
to determine the core "centers", or positions of peak column
densities. Comparison of these centers with the positions of the
VeLLOs may yield insight regarding potential differences between the
formation of low-mass stars and brown dwarfs.

WFC3/IR/S/C 11929

IR Dark Current Monitor

Analyses of ground test data showed that dark current signals are more
reliably removed from science data using darks taken with the same
exposure sequences as the science data, than with a single dark
current image scaled by desired exposure time. Therefore, dark current
images must be collected using all sample sequences that will be used
in science observations. These observations will be used to monitor
changes in the dark current of the WFC3-IR channel on a day-to-day
basis, and to build calibration dark current ramps for each of the
sample sequences to be used by GOs in Cycle 17. For each sample
sequence/array size combination, a median ramp will be created and
delivered to the calibration database system (CDBS).

WFC3/UVIS 11630

Monitoring Active Atmospheres on Uranus and Neptune

We propose Snapshot observations of Uranus and Neptune to monitor
changes in their atmospheres on time scales of weeks and months, as we
have been doing for the past seven years. Previous Hubble Space
Telescope observations (including previous Snapshot programs 8634,
10170, 10534, and 11156), together with near-IR images obtained using
adaptive optics on the Keck Telescope, reveal both planets to be
dynamic worlds which change on time scales ranging from hours to
(terrestrial) years. Uranus equinox occurred in December 2007, and the
northern hemisphere is becoming fully visible for the first time since
the early 1960s. HST observations during the past several years
(Hammel et al. 2005, Icarus 175, 284 and references therein) have
revealed strongly wavelength-dependent latitudinal structure, the
presence of numerous visible-wavelength cloud features in the northern
hemisphere, at least one very long- lived discrete cloud in the
southern hemisphere, and in 2006 the first clearly defined dark spot
seen on Uranus. Long term ground-based observations (Lockwood and
Jerzekiewicz, 2006, Icarus 180, 442; Hammel and Lockwood 2007, Icarus
186, 291) reveal seasonal brightness changes that seem to demand the
appearance of a bright northern polar cap within the next few years.
Recent HST and Keck observations of Neptune (Sromovsky et al. 2003,
Icarus 163, 256 and references therein) show a general increase in
activity at south temperate latitudes until 2004, when Neptune
returned to a rather Voyager-like appearance with discrete bright
spots rather than active latitude bands. Further Snapshot observations
of these two dynamic planets will elucidate the nature of long-term
changes in their zonal atmospheric bands and clarify the processes of
formation, evolution, and dissipation of discrete albedo features.

WFC3/UVIS 11905

WFC3 UVIS CCD Daily Monitor

The behavior of the WFC3 UVIS CCD will be monitored daily with a set
of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K
subarray biases are acquired at less frequent intervals throughout the
cycle to support subarray science observations. The internals from
this proposal, along with those from the anneal procedure (Proposal
11909), will be used to generate the necessary superbias and superdark
reference files for the calibration pipeline (CDBS).

WFC3/UVIS/IR 11644

A Dynamical-Compositional Survey of the Kuiper Belt: A New Window Into
the Formation of the Outer Solar System

The eight planets overwhelmingly dominate the solar system by mass,
but their small numbers, coupled with their stochastic pasts, make it
impossible to construct a unique formation history from the dynamical
or compositional characteristics of them alone. In contrast, the huge
numbers of small bodies scattered throughout and even beyond the
planets, while insignificant by mass, provide an almost unlimited
number of probes of the statistical conditions, history, and
interactions in the solar system. To date, attempts to understand the
formation and evolution of the Kuiper Belt have largely been dynamical
simulations where a hypothesized starting condition is evolved under
the gravitational influence of the early giant planets and an attempt
is made to reproduce the current observed populations. With little
compositional information known for the real Kuiper Belt, the test
particles in the simulation are free to have any formation location
and history as long as they end at the correct point. Allowing
compositional information to guide and constrain the formation,
thermal, and collisional histories of these objects would add an
entire new dimension to our understanding of the evolution of the
outer solar system. While ground based compositional studies have hit
their flux limits already with only a few objects sampled, we propose
to exploit the new capabilities of WFC3 to perform the first ever
large-scale dynamical-compositional study of Kuiper Belt Objects
(KBOs) and their progeny to study the chemical, dynamical, and
collisional history of the region of the giant planets. The
sensitivity of the WFC3 observations will allow us to go up to two
magnitudes deeper than our ground based studies, allowing us the
capability of optimally selecting a target list for a large survey
rather than simply taking the few objects that can be measured, as we
have had to do to date. We have carefully constructed a sample of 120
objects which provides both overall breadth, for a general
understanding of these objects, plus a large enough number of objects
in the individual dynamical subclass to allow detailed comparison
between and within these groups. These objects will likely define the
core Kuiper Belt compositional sample for years to come. While we have
many specific results anticipated to come from this survey, as with
any project where the field is rich, our current knowledge level is
low, and a new instrument suddenly appears which can exploit vastly
larger segments of the population, the potential for discovery -- both
anticipated and not -- is extraordinary.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.)

HSTARS: (None)

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)

SCHEDULED SUCCESSFUL
FGS GSAcq 8 8
FGS REAcq 7 7
OBAD with Maneuver 5 5

SIGNIFICANT EVENTS: (None)


 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Daily Report Cooper, Joe Hubble 0 December 22nd 08 06:17 PM
Daily Report #4505 Cooper, Joe Hubble 0 December 12th 07 05:50 PM
Daily Report #4504 Cooper, Joe Hubble 0 December 11th 07 02:57 PM
Daily Report [email protected] Hubble 0 October 29th 04 04:59 PM
HST Daily Report 131 George Barbehenn Hubble 0 May 11th 04 02:48 PM


All times are GMT +1. The time now is 11:41 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.