A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily Report #4461



 
 
Thread Tools Display Modes
  #1  
Old October 4th 07, 03:48 PM posted to sci.astro.hubble
Cooper, Joe
external usenet poster
 
Posts: 568
Default Daily Report #4461

Notice: Due to the conversion of some ACS WFC or HRC observations into
WFPC2, or NICMOS observations after the loss of ACS CCD science
capability in January, there may be an occasional discrepancy between
a proposal's listed (and correct) instrument usage and the abstract
that follows it.


HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

DAILY REPORT*** # 4461

PERIOD COVERED: UT October 03, 2007 (DOY 276)

OBSERVATIONS SCHEDULED

FGS 11211

An Astrometric Calibration of Population II Distance Indicators

In 2002 HST produced a highly precise parallax for RR Lyrae. That
measurement resulted in an absolute magnitude, M{V}= 0.61+/-0.11, a
useful result, judged by the over ten refereed citations each year
since. It is, however, unsatisfactory to have the direct,
parallax-based, distance scale of Population II variables based on a
single star. We propose, therefore, to obtain the parallaxes of four
additional RR Lyrae stars and two Population II Cepheids, or W Vir
stars. The Population II Cepheids lie with the RR Lyrae stars on a
common K-band Period-Luminosity relation. Using these parallaxes to
inform that relationship, we anticipate a zero-point error of 0.04
magnitude. This result should greatly strengthen confidence in the
Population II distance scale and increase our understanding of RR
Lyrae star and Pop II Cepheid astrophysics.

NIC1/NIC2/NIC3 8795

NICMOS Post-SAA calibration - CR Persistence Part 6

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be non-
standard reference files available to users with a USEAFTER date/time
mark. The keyword 'USEAFTER=date/time' will also be added to the
header of each POST-SAA DARK frame. The keyword must be populated with
the time, in addition to the date, because HST crosses the SAA ~8
times per day so each POST-SAA DARK will need to have the appropriate
time specified, for users to identify the ones they need. Both the raw
and processed images will be archived as POST-SAA DARKSs. Generally we
expect that all NICMOS science/calibration observations started within
50 minutes of leaving an SAA will need such maps to remove the CR
persistence from the science i mages. Each observation will need its
own CRMAP, as different SAA passages leave different imprints on the
NICMOS detectors.

NIC2 10857

Are Organics Common in Outer Planetary Systems?

Mixtures of water ice and organics seem to pervade surfaces in the
outer Solar System, from the rings of Saturn to the Kuiper Belt
Objects. The early Earth was bombarded by the leftover planetesimals
from the formation of the planets, and these must have been rich in
both ice and carbon to provide the building blocks of life. Scattered
light from debris disks is remarkably similar in albedo {total
scattering efficiency} and color {red} to the objects in the outer
solar system. Thus, we have a hint that the same photochemical
processes that happened close to home also happen around other stars.
We propose to study the color of two debris disks in some detail.
Scattering of light is the only window available to us to see the
composition of debris disks in a spatially resolved manner and to
assess their potential for containing planets like ours.

NIC3 11107

Imaging of Local Lyman Break Galaxy Analogs: New Clues to Galaxy
Formation in the Early Universe

We have used the ultraviolet all-sky imaging survey currently being
conducted by the Galaxy Evolution Explorer {GALEX} to identify for the
first time a rare population of low- redshift starbursts with
properties remarkably similar to high-redshift Lyman Break Galaxies
{LBGs}. These "compact UV luminous galaxies" {UVLGs} resemble LBGs in
terms of size, SFR, surface brightness, mass, metallicity, kinematics,
dust, and color. The UVLG sample offers the unique opportunity of
investigating some very important properties of LBGs that have
remained virtually inaccessible at high redshift: their morphology and
the mechanism that drives their star formation. Therefore, in Cycle 15
we have imaged 7 UVLGs using ACS in order to 1} characterize their
morphology and look for signs of interactions and mergers, and 2}
probe their star formation histories over a variety of timescales. The
images show a striking trend of small-scale mergers turning large
amounts of gas into vigorous starbursts {a process referred to as
dissipational or "wet" merging}. Here, we propose to complete our
sample of 31 LBG analogs using the ACS/SBC F150LP {FUV} and WFPC2
F606W {R} filters in order to create a statistical sample to study the
mechanism that triggers star formation in UVLGs and its implications
for the nature of LBGs. Specifically, we will 1} study the trend
between galaxy merging and SFR in UVLGs, 2} artificially redshift the
FUV images to z=1-4 and compare morphologies with those in similarly
sized samples of LBGs at the same rest-frame wavelengths in e.g.
GOODS, UDF, and COSMOS, 3} determine the presence and morphology of
significant stellar mass in "pre-burst" stars, and 4} study their
immediate environment. Together with our Spitzer {IRAC+MIPS}, GALEX,
SDSS and radio data, the HST observations will form a unique union of
data that may for the first time shed light on how the earliest major
episodes of star formation in high redshift galaxies came about. This
proposal was adapted from an ACS HRC+WFC proposal to meet the new
Cycle 16 observing constraints, and can be carried out using the
ACS/SBC and WFPC2 without compromising our original science goals.

WFPC2 11113

Binaries in the Kuiper Belt: Probes of Solar System Formation and
Evolution

The discovery of binaries in the Kuiper Belt and related small body
populations is powering a revolutionary step forward in the study of
this remote region. Three quarters of the known binaries in the Kuiper
Belt have been discovered with HST, most by our snapshot surveys. The
statistics derived from this work are beginning to yield surprising
and unexpected results. We have found a strong concentration of
binaries among low-inclination Classicals, a possible size cutoff to
binaries among the Centaurs, an apparent preference for nearly equal
mass binaries, and a strong increase in the number of binaries at
small separations. We propose to continue this successful program in
Cycle 16; we expect to discover at least 13 new binary systems,
targeted to subgroups where these discoveries can have the greatest
impact.

WFPC2 11128

Time Scales Of Bulge Formation In Nearby Galaxies

Traditionally, bulges are thought to fit well into galaxy formation
models of hierarchical merging. However, it is now becoming well
established that many bulges formed through internal, secular
evolution of the disk rather than through mergers. We call these
objects pseudobulges. Much is still unknown about pseudobulges, the
most pressing questions being: How, exactly, do they build up their
mass? How long does it take? And, how many exist? We are after an
answer to these questions. If pseudobulges form and evolve over longer
periods than the time between mergers, then a significant population
of pseudobulges is hard to explain within current galaxy formation
theories. A pseudobulge indicates that a galaxy has most likely not
undergone a major merger since the formation of the disk. The ages of
pseudobulges give us an estimate for the time scale of this quiescent
evolution. We propose to use 24 orbits of HST time to complete UBVIH
imaging on a sample of 33 nearby galaxies that we have observed with
Spitzer in the mid-IR. These data will be used to measure spatially
resolved stellar population parameters {mean stellar age, metallicity,
and star formation history}; comparing ages to star formation rates
allows us to accurately constrain the time scale of pseudobulge
formation. Our sample of bulges includes both pseudo- and classical
bulges, and evenly samples barred and unbarred galaxies. Most of our
sample is imaged, 13 have complete UBVIH coverage; we merely ask to
complete missing observations so that we may construct a uniform
sample for studying bulge formation. We also wish to compare the
stellar population parameters to a variety of bulge and global galaxy
properties including star formation rates, dynamics, internal bulge
morphology, structure from bulge-disk decompositions, and gas content.
Much of this data set is already or is being assembled. This will
allow us to derive methods of pseudobulge identification that can be
used to accurately count pseudobulges in large surveys. Aside from our
own science goals, we will present this broad set of data to the
community. Thus, we waive proprietary periods for all observations.

WFPC2 11202

The Structure of Early-type Galaxies: 0.1-100 Effective Radii

The structure, formation and evolution of early-type galaxies is still
largely an open problem in cosmology: how does the Universe evolve
from large linear scales dominated by dark matter to the highly
non-linear scales of galaxies, where baryons and dark matter both play
important, interacting, roles? To understand the complex physical
processes involved in their formation scenario, and why they have the
tight scaling relations that we observe today {e.g. the Fundamental
Plane}, it is critically important not only to understand their
stellar structure, but also their dark-matter distribution from the
smallest to the largest scales. Over the last three years the SLACS
collaboration has developed a toolbox to tackle these issues in a
unique and encompassing way by combining new non-parametric strong
lensing techniques, stellar dynamics, and most recently weak
gravitational lensing, with high-quality Hubble Space Telescope
imaging and VLT/Keck spectroscopic data of early-type lens systems.
This allows us to break degeneracies that are inherent to each of
these techniques separately and probe the mass structure of early-type
galaxies from 0.1 to 100 effective radii. The large dynamic range to
which lensing is sensitive allows us both to probe the clumpy
substructure of these galaxies, as well as their low-density outer
haloes. These methods have convincingly been demonstrated, by our
team, using smaller pilot-samples of SLACS lens systems with HST data.
In this proposal, we request observing time with WFPC2 and NICMOS to
observe 53 strong lens systems from SLACS, to obtain complete
multi-color imaging for each system. This would bring the total number
of SLACS lens systems to 87 with completed HST imaging and effectively
doubles the known number of galaxy-scale strong lenses. The deep HST
images enable us to fully exploit our new techniques, beat down
low-number statistics, and probe the structure and evolution of
early-type galaxies, not only with a uniform data-set an order of
magnitude larger than what is available now, but also with a fully
coherent and self-consistent methodological approach!

WFPC2 11227

The orbital period for an ultraluminous X-ray source in NGC1313

The ultraluminous X-ray sources {ULXs} are extragalactic point sources
with luminosities that exceed the Eddington luminosity for
conventional stellar-mass black holes by factors of 10 - 100. It has
been hotly debated whether the ULXs are just common stellar-mass black
hole sources with beamed emission or whether they are sub-Eddington
sources that are powered by the long-sought intermediate mass black
holes {IMBH}. To firmly decide this question, one must obtain
dynamical mass measurements through photometric and spectroscopic
monitoring of the secondaries of these system. The crucial first step
is to establish the orbital period of a ULX, and arguably the best way
to achieve this goal is by monitoring its ellipsoidal light curve. The
extreme ULX NGC1313 X-2 provides an outstanding target for an orbital
period determination because its relatively bright optical counterpart
{V = 23.5} showed a 15% variation between two HST observations
separated by three months. This level of variability is consistent
with that expected for a tidally distorted secondary star. Here we
propose a set of 20 imaging observations with HST/WFPC2 to define the
orbital period. This would be the first photometric measurement of the
orbital period of a ULX binary. Subsequently, we will propose to
obtain spectroscopic observations to obtain its radial velocity
amplitude and thereby a dynamical estimate of its mass.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.)

HSTARS: (None)

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)

************************ SCHEDULED***** SUCCESSFUL

FGS GSacq*************** 09**************** 09
FGS REacq*************** 05**************** 05
OBAD with Maneuver* **** 28**************** 28

SIGNIFICANT EVENTS: (None)


 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Daily Report #4333 Cooper, Joe Hubble 0 April 4th 07 03:43 PM
Daily Report # 4332 Cooper, Joe Hubble 0 April 3rd 07 04:16 PM
Daily Report # 4320 Cooper, Joe Hubble 0 March 16th 07 03:17 PM
Daily Report [email protected] Hubble 0 October 29th 04 04:59 PM
HST Daily Report 131 George Barbehenn Hubble 0 May 11th 04 02:48 PM


All times are GMT +1. The time now is 02:56 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.