A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Astronomy Misc
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

WHY EINSTEIN PROPOSED HIS SECOND POSTULATE



 
 
Thread Tools Display Modes
  #1  
Old April 25th 14, 04:20 PM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default WHY EINSTEIN PROPOSED HIS SECOND POSTULATE

http://philsci-archive.pitt.edu/1743/2/Norton.pdf
John Norton: "In addition to his work as editor of the Einstein papers in finding source material, Stachel assembled the many small clues that reveal Einstein's serious consideration of an emission theory of light; and he gave us the crucial insight that Einstein regarded the Michelson-Morley experiment as evidence for the principle of relativity, whereas later writers almost universally use it as support for the light postulate of special relativity. Even today, this point needs emphasis. The Michelson-Morley experiment is fully compatible with an emission theory of light that contradicts the light postulate."

That is, the Michelson-Morley experiment is compatible with a theory that contradicts Einstein's 1905 constant-speed-of-light postulate, Einstein teaches the truth (according to Stachel and Norton), Einstein's followers "almost universally" use the experiment "as support for the light postulate of special relativity". Honest science in Divine Albert's world.

In the absence of idiotic additional (ad hoc) hypotheses such as length contraction, the Michelson-Morley experiment does indeed refute the assumption that the speed of light is independent of the speed of the light source:

http://www.marxists.org/reference/su...r/poincare.htm
Henri Poincaré: "Lorentz could have accounted for the facts by supposing that the velocity of light is greater in the direction of the earth's motion than in the perpendicular direction. He preferred to admit that the velocity is the same in the two directions, but that bodies are smaller in the former than in the latter."

http://books.google.com/books?id=JokgnS1JtmMC
"Relativity and Its Roots", Banesh Hoffmann, p.92: "Moreover, if light consists of particles, as Einstein had suggested in his paper submitted just thirteen weeks before this one, the second principle seems absurd: A stone thrown from a speeding train can do far more damage than one thrown from a train at rest; the speed of the particle is not independent of the motion of the object emitting it. And if we take light to consist of particles and assume that these particles obey Newton's laws, they will conform to Newtonian relativity and thus automatically account for the null result of the Michelson-Morley experiment without recourse to contracting lengths, local time, or Lorentz transformations. Yet, as we have seen, Einstein resisted the temptation to account for the null result in terms of particles of light and simple, familiar Newtonian ideas, and introduced as his second postulate something that was more or less obvious when thought of in terms of waves in an ether."

Pentcho Valev
  #2  
Old April 26th 14, 09:53 AM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default WHY EINSTEIN PROPOSED HIS SECOND POSTULATE

The assumption that the speed of light (relative to the observer) is independent of the speed of the light source is false but still can be justified in terms of light waves propagating in the ether. In contrast, the conclusion (derivable from Einstein's 1905 two postulates) that the speed of light (relative to the observer) is independent of the speed of the observer is unjustifiable. Any serious interpretation of the Doppler effect (moving observer) refutes both this conclusion and special relativity as a whole:

http://www.youtube.com/watch?v=bg7O4rtlwEE
"Doppler effect - when an observer moves towards a stationary source. ...the velocity of the wave relative to the observer is faster than that when it is still."

http://www.youtube.com/watch?v=SC0Q6-xt-Xs
"Doppler effect - when an observer moves away from a stationary source. ....the velocity of the wave relative to the observer is slower than that when it is still."

http://www.cmmp.ucl.ac.uk/~ahh/teach...24n/lect19.pdf
Tony Harker, University College London: "The Doppler Effect: Moving sources and receivers. The phenomena which occur when a source of sound is in motion are well known. The example which is usually cited is the change in pitch of the engine of a moving vehicle as it approaches. In our treatment we shall not specify the type of wave motion involved, and our results will be applicable to sound or to light. (...) Now suppose that the observer is moving with a velocity Vo away from the source. (....) If the observer moves with a speed Vo away from the source (...), then in a time t the number of waves which reach the observer are those in a distance (c-Vo)t, so the number of waves observed is (c-Vo)t/lambda, giving an observed frequency f'=f(1-Vo/c) when the observer is moving away from the source at a speed Vo."

Tony Harker: "In a time t the number of waves which reach the observer are those in a distance (c-Vo)t."

Consequence: The speed of the light waves relative to the moving observer is:

c' = distance/time = (c - Vo)t/t = c - Vo,

in violation of special relativity.

http://www.einstein-online.info/spotlights/doppler
Albert Einstein Institute: "The frequency of a wave-like signal - such as sound or light - depends on the movement of the sender and of the receiver. This is known as the Doppler effect. (...) Here is an animation of the receiver moving towards the source: (...) By observing the two indicator lights, you can see for yourself that, once more, there is a blue-shift - the pulse frequency measured at the receiver is somewhat higher than the frequency with which the pulses are sent out. This time, the distances between subsequent pulses are not affected, but still there is a frequency shift: As the receiver moves towards each pulse, the time until pulse and receiver meet up is shortened. In this particular animation, which has the receiver moving towards the source at one third the speed of the pulses themselves, four pulses are received in the time it takes the source to emit three pulses."

Let "the distance between subsequent pulses" be 300000 km. Then the frequency measured by the stationary receiver is f = 1 s^(-1) and that measured by the moving receiver is f' = 4/3 s^(-1). Accordingly, the speed of the pulses relative to the moving receiver is:

c' = (4/3)c = 400000 km/s

in violation of special relativity.

The relativistic corrections change essentially nothing. The speed of the receiver is (1/3)c so gamma is 1.05. Accordingly, the corrected f' is (1.05)*(4/3) s^(-1) and the corrected c' is (1.05)*(400000) km/s. Special relativity remains violated.

Pentcho Valev
 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
MAXWELL AND EINSTEIN'S LIGHT POSTULATE Pentcho Valev Astronomy Misc 2 August 22nd 13 12:23 AM
Einstein's Second Postulate Violates His First. Pentcho Valev Astronomy Misc 0 December 16th 08 09:57 AM
Einstein's Second Postulate Violates His First. Pentcho Valev Astronomy Misc 1 December 13th 08 11:04 AM
Einstein's Second Postulate Violates His First. Androcles[_8_] Astronomy Misc 15 December 8th 08 09:36 PM
RELATIVITY WITHOUT EINSTEIN LIGHT POSTULATE Pentcho Valev Astronomy Misc 10 August 16th 07 06:43 PM


All times are GMT +1. The time now is 06:22 AM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.