A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily Report #5037



 
 
Thread Tools Display Modes
  #1  
Old February 22nd 10, 04:51 PM posted to sci.astro.hubble
Cooper, Joe
external usenet poster
 
Posts: 568
Default Daily Report #5037

HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science

DAILY REPORT #5037

PERIOD COVERED: 5am February 19 - 5am February 22, 2010 (DOY 050/10:00z-053/10:00z)

OBSERVATIONS SCHEDULED

WFC3/UV 12019

After the Fall: Fading AGN in Post-starburst Galaxies

We propose joint Chandra and HST observations of an extraordinary
sample of 12 massive post-starburst galaxies at z=0.4-0.8 that are in
the short-lived evolution phase a few 100 Myr after the peak of
merger-driven star formation and AGN activity. We will use the data to
measure X-ray luminosities, black hole masses, and accretion rates;
and with the accurate "clocks" provided by post-starburst stellar
populations, we will directly test theoretical models that predict a
power-law decay in the AGN light curve. We will also test whether star
formation and black hole accretion shut down in lock-step, quantify
whether the black holes transition to radiatively inefficient
accretion states, and constrain the observational signatures of black
hole mergers.

ACS/WFC 11995

CCD Daily Monitor (Part 2)

This program comprises basic tests for measuring the read noise and
dark current of the ACS WFC and for tracking the growth of hot pixels.
The recorded frames are used to create bias and dark reference images
for science data reduction and calibration. This program will be
executed four days per week (Mon, Wed, Fri, Sun) for the duration of
Cycle 17. To facilitate scheduling, this program is split into three
proposals. This proposal covers 320 orbits (20 weeks) from 1 February
2010 to 20 June 2010.

WFC3/IR/S/C 11929

IR Dark Current Monitor

Analyses of ground test data showed that dark current signals are more
reliably removed from science data using darks taken with the same
exposure sequences as the science data, than with a single dark
current image scaled by desired exposure time. Therefore, dark current
images must be collected using all sample sequences that will be used
in science observations. These observations will be used to monitor
changes in the dark current of the WFC3-IR channel on a day-to-day
basis, and to build calibration dark current ramps for each of the
sample sequences to be used by Gos in Cycle 17. For each sample
sequence/array size combination, a median ramp will be created and
delivered to the calibration database system (CDBS).

WFC3/UVIS 11908

Cycle 17: UVIS Bowtie Monitor

Ground testing revealed an intermittent hysteresis type effect in the
UVIS detector (both CCDs) at the level of ~1%, lasting hours to days.
Initially found via an unexpected bowtie-shaped feature in flatfield
ratios, subsequent lab tests on similar e2v devices have since shown
that it is also present as simply an overall offset across the entire
CCD, i.e., a QE offset without any discernable pattern. These lab
tests have further revealed that overexposing the detector to count
levels several times full well fills the traps and effectively
neutralizes the bowtie. Each visit in this proposal acquires a set of
three 3x3 binned internal flatfields: the first unsaturated image will
be used to detect any bowtie, the second, highly exposed image will
neutralize the bowtie if it is present, and the final image will allow
for verification that the bowtie is gone.

WFC3/UVIS 11905

WFC3 UVIS CCD Daily Monitor

The behavior of the WFC3 UVIS CCD will be monitored daily with a set
of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K
subarray biases are acquired at less frequent intervals throughout the
cycle to support subarray science observations. The internals from
this proposal, along with those from the anneal procedure (Proposal
11909), will be used to generate the necessary superbias and superdark
reference files for the calibration pipeline (CDBS).

ACS/WFC3 11882

CCD Hot Pixel Annealing

All the data for this program is acquired using internal targets
(lamps) only, so all of the exposures should be taken during Earth
occultation time (but not during SAA passages). This program emulates
the ACS pre-flight ground calibration and post launch SMOV testing
(program 8948), so that results from each epoch can be directly
compared. Extended Pixel Edge Response (EPER) and First Pixel Response
(FPR) data will be obtained over a range of signal levels for the Wide
Field Channel (WFC). The High Resolution Channel (HRC) visits have
been removed since it could not be repaired during SM4.

STIS/CCD 11846

CCD Bias Monitor-Part 1

The purpose of this proposal is to monitor the bias in the 1x1, 1x2,
2x1, and 2x2 bin settings at gain=1, and 1x1 at gain = 4, to build up
high-S/N superbiases and track the evolution of hot columns.

STIS/CCD 11844

CCD Dark Monitor Part 1

The purpose of this proposal is to monitor the darks for the STIS CCD.

WFC3/IR 11838

Completing a Flux-limited Survey for X-ray Emission from Radio Jets

We will measure the changing flow speeds, magnetic fields, and energy
fluxes in well-resolved quasar jets found in our short-exposure
Chandra survey by combining new, deep Chandra data with radio and
optical imaging. We will image each jet with sufficient sensitivity to
estimate beaming factors and magnetic fields in several distinct
regions, and so map the variations in these parameters down the jets.
HST observations will help diagnose the role of synchrotron emission
in the overall SED, and may reveal condensations on scales less than
0.1 arcsec.

COS/NUV/FUV 11741

Probing Warm-Hot Intergalactic Gas at 0.5 z 1.3 with a Blind
Survey for O VI, Ne VIII, Mg X, and Si XII Absorption Systems

Currently we can only account for half of the baryons (or less)
expected to be found in the nearby universe based on D/H and CMB
observations. This "missing baryons problem" is one of the
highest-priority challenges in observational extragalatic astronomy.
Cosmological simulations suggest that the baryons are hidden in
low-density, shock-heated intergalactic gas in the log T = 5 - 7
range, but intensive UV and X-ray surveys using O VI, O VII, and O
VIII absorption lines have not yet confirmed this prediction. We
propose to use COS to carry out a sensitive survey for Ne VIII and Mg
X absorption in the spectra of nine QSOs at z(QSO) 0.89. For the
three highest-redshift QSOs, we will also search for Si XII. This
survey will provide more robust constraints on the quantity of baryons
in warm-hot intergalactic gas at 0.5 z 1.3, and the data will
provide rich constraints on the metal enrichment, physical conditions,
and nature of a wide variety of QSO absorbers in addition to the
warm-hot systems. By comparing the results to other surveys at lower
redshifts (with STIS, FUSE, and from the COS GTO programs), the
project will also enable the first study of how these absorbers evolve
with redshift at z 1. By combining the program with follow-up galaxy
redshift surveys, we will also push the study of galaxy-absorber
relationships to higher redshifts, with an emphasis on the
distribution of the WHIM with respect to the large-scale matter
distribution of the universe.

WFC3/UVIS 11732

The Temperature Profiles of Quasar Accretion Disks

We can now routinely measure the size of quasar accretion disks using
gravitational microlensing of lensed quasars. At optical wavelengths
we observe a size and scaling with black hole mass roughly consistent
with thin disk theory but the sizes are larger than expected from the
observed optical fluxes. One solution would be to use a flatter
temperature profile, which we can study by measuring the wavelength
dependence of the disk size over the largest possible wavelength
baseline. Thus, to understand the size discrepancy and to probe closer
to the inner edge of the disk we need to extend our measurements to UV
wavelengths, and this can only be done with HST. For example, in the
UV we should see significant changes in the optical/UV size ratio with
black hole mass. We propose monitoring 5 lenses spanning a broad range
of black hole masses with well-sampled ground based light curves,
optical disk size measurements and known GALEX UV fluxes during Cycles
17 and 18 to expand from our current sample of two lenses. We would
obtain 5 observations of each target in each Cycle, similar to our
successful strategy for the first two targets.

WFC3/IR 11719

A Calibration Database for Stellar Models of Asymptotic Giant Branch
Stars

Studies of galaxy formation and evolution rely increasingly on the
interpretation and modeling of near-infrared observations. At these
wavelengths, the brightest stars are intermediate mass asymptotic
giant branch (AGB) stars. These stars can contribute nearly 50% of the
integrated luminosity at near infrared and even optical wavelengths,
particularly for the younger stellar populations characteristic of
high-redshift galaxies (z1). AGB stars are also significant sources
of dust and heavy elements. Accurate modeling of AGB stars is
therefore of the utmost importance.

The primary limitation facing current models is the lack of useful
calibration data. Current models are tuned to match the properties of
the AGB population in the Magellanic Clouds, and thus have only been
calibrated in a very narrow range of sub-solar metallicities.
Preliminary observations already suggest that the models are
overestimating AGB lifetimes by factors of 2-3 at lower metallicities.
At higher (solar) metallicities, there are no appropriate observations
for calibrating the models.

We propose a WFC3/IR SNAP survey of nearby galaxies to create a large
database of AGB populations spanning the full range of metallicities
and star formation histories. Because of their intrinsically red
colors and dusty circumstellar envelopes, tracking the numbers and
bolometric fluxes of AGB stars requires the NIR observations we
propose here. The resulting observations of nearby galaxies with deep
ACS imaging offer the opportunity to obtain large (100-1000's)
complete samples of AGB stars at a single distance, in systems with
well-constrained star formation histories and metallicities.

WFC3/IR 11696

Infrared Survey of Star Formation Across Cosmic Time

We propose to use the unique power of WFC3 slitless spectroscopy to
measure the evolution of cosmic star formation from the end of the
reionization epoch at z6 to the close of the galaxy- building era at
z~0.3.Pure parallel observations with the grisms have proven to be
efficient for identifying line emission from galaxies across a broad
range of redshifts. The G102 grism on WFC3 was designed to extend this
capability to search for Ly-alpha emission from the first galaxies.
Using up to 250 orbits of pure parallel WFC3 spectroscopy, we will
observe about 40 deep (4-5 orbit) fields with the combination of G102
and G141, and about 20 shallow (2-3 orbit) fields with G141 alone.

Our primary science goals at the highest redshifts a (1) Detect Lya
in ~100 galaxies with z5.6 and measure the evolution of the Lya
luminosity function, independent of of cosmic variance; 2) Determine
the connection between emission line selected and continuum-break
selected galaxies at these high redshifts, and 3) Search for the
proposed signature of neutral hydrogen absorption at re-ionization. At
intermediate redshifts we will (4) Detect more than 1000 galaxies in
Halpha at 0.5z1.8 to measure the evolution of the
extinction-corrected star formation density across the peak epoch of
star formation. This is over an order-of-magnitude improvement in the
current statistics, from the NICMOS Parallel grism survey. (5) Trace
``cosmic downsizing" from 0.5z2.2; and (6) Estimate the evolution in
reddening and metallicty in star- forming galaxies and measure the
evolution of the Seyfert population. For hundreds of spectra we will
be able to measure one or even two line pair ratios -- in particular,
the Balmer decrement and [OII]/[OIII] are sensitive to gas reddening
and metallicity. As a bonus, the G102 grism offers the possibility of
detecting Lya emission at z=7-8.8.

To identify single-line Lya emitters, we will exploit the wide
0.8--1.9um wavelength coverage of the combined G102+G141 spectra. All
[OII] and [OIII] interlopers detected in G102 will be reliably
separated from true LAEs by the detection of at least one strong line
in the G141 spectrum, without the need for any ancillary data. We
waive all proprietary rights to our data and will make high-level data
products available through the ST/ECF.

COS/FUV 11687

SNAPing Coronal Iron

This is a Snapshot Survey to explore two forbidden lines of highly
ionized iron in late-type coronal sources. Fe XII 1349 (T~ 2 MK) and
Fe XXI 1354 (T~ 10 MK) -- well known to Solar Physics -- have been
detected in about a dozen cool stars, mainly with HST/STIS. The UV
coronal forbidden lines are important because they can be observed
with velocity resolution of better than 15 km/s, whereas even the
state-of-the-art X-ray spectrometers on Chandra can manage only 300
km/s in the kilovolt band where lines of highly ionized iron more
commonly are found. The kinematic properties of hot coronal plasmas,
which are of great interest to theorists and modelers, thus only are
accessible in the UV at present. The bad news is that the UV coronal
forbidden lines are faint, and were captured only in very deep
observations with STIS. The good news is that 3rd-generation Cosmic
Origins Spectrograph, slated for installation in HST by SM4, in a mere
25 minute exposure with its G130M mode can duplicate the sensitivity
of a landmark 25-orbit STIS E140M observation of AD Leo, easily the
deepest such exposure of a late-type star so far. Our goal is to build
up understanding of the properties of Fe XII and Fe XXI in additional
objects beyond the current limited sample: how the lineshapes depend
on activity, whether large scale velocity shifts can be detected, and
whether the dynamical content of the lines can be inverted to map the
spatial morphology of the stellar corona (as in "Doppler Imaging'').
In other words, we want to bring to bear in the coronal venue all the
powerful tricks of spectroscopic remote sensing, well in advance of
the time that this will be possible exploiting the corona's native
X-ray radiation. The 1290-1430 band captured by side A of G130M also
contains a wide range of key plasma diagnostics that form at
temperatures from below 10, 000 K (neutral lines of CNO), to above
200, 000 K (semi-permitted O V 1371), including the important bright
multiplets of C II at 1335 and Si IV at 1400; yielding a diagnostic
gold mine for the subcoronal atmosphere. Because of the broad value of
the SNAP spectra, beyond the coronal iron project, we waive the normal
proprietary rights.

WFC3/UVIS/IR 11644

A Dynamical-Compositional Survey of the Kuiper Belt: A New Window Into
the Formation of the Outer Solar System

The eight planets overwhelmingly dominate the solar system by mass,
but their small numbers, coupled with their stochastic pasts, make it
impossible to construct a unique formation history from the dynamical
or compositional characteristics of them alone. In contrast, the huge
numbers of small bodies scattered throughout and even beyond the
planets, while insignificant by mass, provide an almost unlimited
number of probes of the statistical conditions, history, and
interactions in the solar system. To date, attempts to understand the
formation and evolution of the Kuiper Belt have largely been dynamical
simulations where a hypothesized starting condition is evolved under
the gravitational influence of the early giant planets and an attempt
is made to reproduce the current observed populations. With little
compositional information known for the real Kuiper Belt, the test
particles in the simulation are free to have any formation location
and history as long as they end at the correct point. Allowing
compositional information to guide and constrain the formation,
thermal, and collisional histories of these objects would add an
entire new dimension to our understanding of the evolution of the
outer solar system. While ground based compositional studies have hit
their flux limits already with only a few objects sampled, we propose
to exploit the new capabilities of WFC3 to perform the first ever
large-scale dynamical-compositional study of Kuiper Belt Objects
(KBOs) and their progeny to study the chemical, dynamical, and
collisional history of the region of the giant planets. The
sensitivity of the WFC3 observations will allow us to go up to two
magnitudes deeper than our ground based studies, allowing us the
capability of optimally selecting a target list for a large survey
rather than simply taking the few objects that can be measured, as we
have had to do to date. We have carefully constructed a sample of 120
objects which provides both overall breadth, for a general
understanding of these objects, plus a large enough number of objects
in the individual dynamical subclass to allow detailed comparison
between and within these groups. These objects will likely define the
core Kuiper Belt compositional sample for years to come. While we have
many specific results anticipated to come from this survey, as with
any project where the field is rich, our current knowledge level is
low, and a new instrument suddenly appears which can exploit vastly
larger segments of the population, the potential for discovery -- both
anticipated and not -- is extraordinary.

WFC3/UVIS 11629

Far-UV Phase-Resolved Spectroscopy of PSR B0656+14

X-ray observations of the brightest middle-aged pulsar PSR B0656+14
have shown a Wien tail of thermal emission from the neutron star
surface in soft X-rays and magnetospheric emission at higher X-ray
energies. Optical/near-UV observations of this pulsar have shown that
its emission is predominantly magnetospheric in this range and
indicated that the Rayleigh-Jeans thermal component could dominate in
the far-UV. This hypothesis has been confirmed by our STIS/FUV
observation, which, however, was too short to separate and study the
thermal emission (only 2 of 8 allocated orbits were executed before
the STIS failure). Using the superior sensitivity of COS/FUV, we will
perform phase-resolved spectroscopy and wavelength-resolved timing of
the pulsar radiation in the 1105-1900 A band. The results of this
observation, combined with the optical-UV and X-ray data, will allow
us to firmly separate the thermal and magnetospheric components and
infer the temperature and radius of the neutron star, which is
important for understanding the thermal evolution of neutron stars and
constraining the composition and equation of state of their superdense
interiors.

STIS/CCD 11606

Dynamical Hypermassive Black Hole Masses

We will use STIS spectra to derive the masses of 5 hypermassive black
holes (HMBHs). From the observed scaling relations defined by less
massive spheroids, these objects are expected to reside at the nuclei
of host galaxies with stellar velocity dispersions greater than 320
km/s. These 5 targets have confirmed regular gas distributions on the
scales of the black hole sphere of influence. It is essential that the
sphere of influence is resolved for accurate determinations of black
hole mass (0.1"). These scales cannot be effectively observed from the
ground. Only two HMBHs have had their masses modeled so far; it is
impossible to draw any general conclusions about the connections
between HMBH mass and their massive host galaxies. With these 5
targets we will determine whether these HMBHs deviate from the scaling
relations defined by less massive spheroids. A larger sample will
allow us to firmly anchor the high mass end of the correlation between
black hole mass and stellar velocity dispersion, and other scaling
relations. Therefore we are also conducting a SNAPshot program with
which we expect to detect a further 24 HMBH candidates for STIS
observation in future cycles. At the completion of this project we
will have populated the high mass end of the scaling relations with
the sample sizes enjoyed by less massive spheroids.

WFC3/UVIS 11594

A WFC3 Grism Survey for Lyman Limit Absorption at z=2

We propose to conduct a spectroscopic survey of Lyman limit absorbers
at redshifts 1.8 z 2.5, using WFC3 and the G280 grism. This
proposal intends to complete an approved Cycle 15 SNAP program
(10878), which was cut short due to the ACS failure. We have selected
64 quasars at 2.3 z 2.6 from the Sloan Digital Sky Survey
Spectroscopic Quasar Sample, for which no BAL signature is found at
the QSO redshift and no strong metal absorption lines are present at z
2.3 along the lines of sight. The survey has three main

observational goals. First, we will determine the redshift frequency
dn/dz of the LLS over the column density range 16.0 log(NHI) 20.3
cm^-2. Second, we will measure the column density frequency
distribution f(N) for the partial Lyman limit systems (PLLS) over the
column density range 16.0 log(NHI) 17.5 cm^-2. Third, we will
identify those sightlines which could provide a measurement of the
primordial D/H ratio. By carrying out this survey, we can also help
place meaningful constraints on two key quantities of cosmological
relevance. First, we will estimate the amount of metals in the LLS
using the f(N), and ground based observations of metal line
transitions. Second, by determining f(N) of the PLLS, we can constrain
the amplitude of the ionizing UV background at z~2 to a greater
precision. This survey is ideal for a snapshot observing program,
because the on-object integration times are all well below 30 minutes,
and follow-up observations from the ground require minimal telescope
time due to the QSO sample being bright.

WFC3/ACS/IR 11584

Resolving the Smallest Galaxies with ACS

An order of magnitude more dwarf galaxies are expected to inhabit the
Local Group, based on currently accepted galaxy formation models, than
have been observed. This discrepancy has been noted in environments
ranging from the field to rich clusters, with evidence emerging that
lower density regions contain fewer dwarfs per giant than higher
density regions, in further contrast to model predictions. However,
there is no complete census of the faintest dwarf galaxies in any
environment. The discovery of the smallest and faintest dwarfs is
hampered by the limitations in detecting such compact or low surface
brightness galaxies, and this is compounded by the great difficulty in
determining accurate distances to, or ascertaining group membership
for, such faint objects. The M81 group provides a powerful means for
establishing membership for faint galaxies in a low density region.
With a distance modulus of 27.8, the tip of the red giant branch
(TRGB) appears at I ~ 24, just within the reach of ground based
surveys. We have completed a 65 square degree survey in the region
around M81 with the CFHT/MegaCam. Half of our survey was completed
before Cycle 16 and we were awarded time with WFPC2 to observe 15 new
candidate dwarf galaxy group members in F606W and F814W bands in order
to construct color-magnitude diagrams from which to measure accurate
TRGB distances and determine star formation and metallicity histories.
The data obtained show that 8 - 9 of these objects are galaxies at the
same distance as M81. In completing our survey, we have discovered an
additional 8 candidate galaxies we propose to image with ACS in order
to measure TRGB distances and establish membership. We also wish to
re-observe our smallest candidate group member and a tidal dwarf
candidate with deeper observations made possible with ACS. Once
membership has been established for this second set of candidates, we
will have a complete census of the dwarf galaxy population in the M8
group to M_r ~ -10, allowing us to obtain a firm measurement of the
luminosity function faint-end slope, and, combined with previous HST
data, to provide a complete inventory of the age and abundance
properties for the collapsed core of the M81 group.

STIS/CCD/MA2 11568

A SNAPSHOT Survey of the Local Interstellar Medium: New NUV
Observations of Stars with Archived FUV Observations

We propose to obtain high-resolution STIS E230H SNAP observations of
MgII and FeII interstellar absorption lines toward stars within 100
parsecs that already have moderate or high-resolution far-UV (FUV),
900-1700 A, observations available in the MAST Archive. Fundamental
properties, such as temperature, turbulence, ionization, abundances,
and depletions of gas in the local interstellar medium (LISM) can be
measured by coupling such observations. Due to the wide spectral range
of STIS, observations to study nearby stars also contain important
data about the LISM embedded within their spectra. However, unlocking
this information from the intrinsically broad and often saturated FUV
absorption lines of low-mass ions, (DI, CII, NI, OI), requires first
understanding the kinematic structure of the gas along the line of
sight. This can be achieved with high resolution spectra of high-mass
ions, (FeII, MgII), which have narrow absorption lines, and can
resolve each individual velocity component (interstellar cloud). By
obtaining short (~10 minute) E230H observations of FeII and MgII, for
stars that already have moderate or high- resolution FUV spectra, we
can increase the sample of LISM measurements, and thereby expand our
knowledge of the physical properties of the gas in our galactic
neighborhood. STIS is the only instrument capable of obtaining the
required high resolution data now or in the foreseeable future.

WFC3/ACS/IR 11563

Galaxies at z~7-10 in the Reionization Epoch: Luminosity Functions to
0.2L* from Deep IR Imaging of the HUDF and HUDF05 Fields

The first generations of galaxies were assembled around redshifts
z~7-10+, just 500-800 Myr after recombination, in the heart of the
reionization of the universe. We know very little about galaxies in
this period. Despite great effort with HST and other telescopes, less
than ~15 galaxies have been reliably detected so far at z7,
contrasting with the ~1000 galaxies detected to date at z~6, just
200-400 Myr later, near the end of the reionization epoch. WFC3 IR can
dramatically change this situation, enabling derivation of the galaxy
luminosity function and its shape at z~7-8 to well below L*,
measurement of the UV luminosity density at z~7-8 and z~8-9, and
estimates of the contribution of galaxies to reionization at these
epochs, as well as characterization of their properties (sizes,
structure, colors). A quantitative leap in our understanding of early
galaxies, and the timescales of their buildup, requires a total sample
of ~100 galaxies at z~7-8 to ~29 AB mag. We can achieve this with 192
WFC3 IR orbits on three disjoint fields (minimizing cosmic variance):
the HUDF and the two nearby deep fields of the HUDF05. Our program
uses three WFC3 IR filters, and leverages over 600 orbits of existing
ACS data, to identify, with low contamination, a large sample of over
100 objects at z~7-8, a very useful sample of ~23 at z~8-9, and limits
at z~10. By careful placement of the WFC3 IR and parallel ACS
pointings, we also enhance the optical ACS imaging on the HUDF and a
HUDF05 field. We stress (1) the need to go deep, which is paramount to
define L*, the shape, and the slope alpha of the luminosity function
(LF) at these high redshifts; and (2) the far superior performance of
our strategy, compared with the use of strong lensing clusters, in
detecting significant samples of faint z~7-8 galaxies to derive their
luminosity function and UV ionizing flux. Our recent z~7.4 NICMOS
results show that wide-area IR surveys, even of GOODS-like depth,
simply do not reach faint enough at z~7-9 to meet the LF and UV flux
objectives. In the spirit of the HDF and the HUDF, we will waive any
proprietary period, and will also deliver the reduced data to STScI.
The proposed data will provide a Legacy resource of great value for a
wide range of archival science investigations of galaxies at redshifts
z~2-9. The data are likely to remain the deepest IR/optical images
until JWST is launched, and will provide sources for spectroscopic
followup by JWST, ALMA and EVLA.

COS/NUV 11561

An Intensive COS Spectroscopic Study of the Planetary Debris Disks
Around two Warm White Dwarfs

It is very likely that the gas giants in our Solar system will survive
the evolution of the Sun into a white dwarf, and the same is thought
to be generally true for Jovian planets around solar-like stars if
their initial orbits are wider than ~3AU. Despite this prediction, no
unambiguous detection of a planet around a white dwarf has been
announced so far. However, over the past few years, about a dozen
white dwarfs have been identified which host metal-rich debris disks
that are thought to stem from the tidal disruption of asteroids. In
most cases the debris disks are observed in the form of an infrared
flux excess, and offer relatively little diagnostic potential for the
study of their structure. We have discovered three warm (T~20000K)
white dwarfs with metal-rich debris disks in a gaseous phase which
display strong double-peaked CaII emission lines in the I-band and
weak Fe 5169A emission. The line profiles can be modeled in terms of
Keplerian disks with an extension of ~1Rsun around the white dwarfs.
Photospheric MgII 4481A absorption demonstrates that the white dwarfs
are accreting from the debris disks. Besides these spectral features,
the optical wavelength range is devoid of other useful metal
transitions. Here, we propose an intensive spectroscopic ultraviolet
study of these systems, which will provide (a) ~1000 photospheric
absorption lines of 15 chemical elements, allowing an accurate
abundance study of the material accreted from the debris disks, and
(b) ~2 dozen additional emission lines of Mg, Cr, Ti, and Fe that will
provide detailed insight into the dynamical, thermal, and density
structure of these exo-planetary debris disks.

WFC3/UVI/IR 11557

The Nature of Low-Ionization BAL QSOs

The rare subclass of optically-selected QSOs known as low-ionization
broad absorption line (LoBAL) QSOs show signs of high-velocity gas
outflows and reddened continua indicative of dust obscuration. Recent
studies show that galaxies hosting LoBAL QSOs tend to be ultraluminous
infrared systems that are undergoing mergers, and that have dominant
young ( 100 Myr) stellar populations. Such studies support the idea
that LoBAL QSOs represent a short- lived phase early in the life of
QSOs, when powerful AGN-driven winds are blowing away the dust and gas
surrounding the QSO. If so, understanding LoBALs would be critical in
the study of phenomena regulating black hole and galaxy evolution,
such as AGN feedback and the early stages of nuclear accretion. These
results, however, come from very small samples that may have serious
selection biases. We are therefore taking a more aggressive approach
by conducting a systematic multiwavelength study of a volume limited
sample of LoBAL QSOs at 0.5 z 0.6 drawn from SDSS. We propose to
image their host galaxies in two bands using WFC3/UVIS and WFC3/IR to
study the morphologies for signs of recent tidal interactions and to
map their interaction and star forming histories. We will thus
determine whether LoBAL QSOs are truly exclusively found in young
merging systems that are likely to be in the early stages of nuclear
accretion.

NIC2/WFC3/IR 11548

Infrared Imaging of Protostars in the Orion A Cloud: The Role of
Environment in Star Formation

We propose NICMOS and WFC3/IR observations of a sample of 252
protostars identified in the Orion A cloud with the Spitzer Space
Telescope. These observations will image the scattered light escaping
the protostellar envelopes, providing information on the shapes of
outflow cavities, the inclinations of the protostars, and the overall
morphologies of the envelopes. In addition, we ask for Spitzer time to
obtain 55-95 micron spectra of 75 of the protostars. Combining these
new data with existing 3.6 to 70 micron photometry and forthcoming
5-40 micron spectra measured with the Spitzer Space Telescope, we will
determine the physical properties of the protostars such as envelope
density, luminosity, infall rate, and outflow cavity opening angle. By
examining how these properties vary with stellar density (i.e.
clusters vs. groups vs. isolation) and the properties of the
surrounding molecular cloud; we can directly measure how the
surrounding environment influences protostellar evolution, and
consequently, the formation of stars and planetary systems.
Ultimately, this data will guide the development of a theory of
protostellar evolution.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.)

HSTARS: (None)

COMPLETED OPS REQUEST:

18814-0 - Null Genslew for proposal 12077 - slot 7 @ 050/1152z

COMPLETED OPS NOTES: (None)

SCHEDULED SUCCESSFUL
FGS GSAcq 19 19
FGS REAcq 27 27
OBAD with Maneuver 16 16

SIGNIFICANT EVENTS: (None)


 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Daily Report #4825 Cooper, Joe Hubble 0 April 3rd 09 04:22 PM
Daily Report #4796 Cooper, Joe Hubble 0 February 23rd 09 03:05 PM
Daily Report Cooper, Joe Hubble 0 December 22nd 08 06:17 PM
Daily Report [email protected] Hubble 0 October 29th 04 04:59 PM
HST Daily Report 131 George Barbehenn Hubble 0 May 11th 04 02:48 PM


All times are GMT +1. The time now is 07:55 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.