A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily Report #5118



 
 
Thread Tools Display Modes
  #1  
Old June 16th 10, 03:15 PM posted to sci.astro.hubble
Cooper, Joe
external usenet poster
 
Posts: 568
Default Daily Report #5118

HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science

DAILY REPORT #5118

PERIOD COVERED: 5am June 15 - 5am June 16, 2010 (DOY 166/09:00z-167/09:00z)

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.)

HSTARS: (None)

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)

SCHEDULED SUCCESSFUL
FGS GSAcq 6 6
FGS REAcq 9 9
OBAD with Maneuver 4 4

SIGNIFICANT EVENTS: (None)



OBSERVATIONS SCHEDULED:

COS/NUV 11538

COS-GTO: Imaging of Mid-UV Emissions from Io in Eclipse

The atmosphere and corona of Jupiter's volcanic moon Io emit light at
a wide variety of wavelengths, from FUV neutral O and S lines to SO
emission at 1.7 microns. These emissions provide important constraints
on the distribution and chemistry of Io's atmosphere, and Io's
interaction with the Jovian magnetosphere. The neutral O and S FUV
emissions, shortward of 2000, have been imaged extensively by HST/STIS
and visible emissions (from neutral Na, K and O line emission, and SO2
continuum emission) have been imaged by the Galileo, Cassini, and New
Horizons spacecraft, but the spatial distribution of emissions in the
2000-3000 region, thought to be dominated by SO2 electron impact
continuum emission, has not yet been determined. Earlier long-slit
observations with STIS indicated strong concentration of 2800?
emission over the active volcano Prometheus (Jessup et al. 2004),
suggesting local volcanic control, but Cassini images suggest that the
SO2 continuum seen at longer wavelengths is instead concentrated over
the sub-Jovian and anti-Jovian points where there are magnetic
connections between Io and the Jovian magnetosphere- the anti-Jovian
point is close to Prometheus. A series of 200-second integrations
taken in Jupiter eclipse should determine whether emission is
concentrated over volcanos or over the sub-Jovian point, and should be
able to observe motion of the emission due to changing magnetic field
orientation if it is magnetically controlled. This observation will
also provide experience in the use of COS in imaging mode.

COS/NUV/FUV 11598

How Galaxies Acquire their Gas: A Map of Multiphase Accretion and
Feedback in Gaseous Galaxy Halos

We propose to address two of the biggest open questions in galaxy
formation - how galaxies acquire their gas and how they return it to
the IGM - with a concentrated COS survey of diffuse multiphase gas in
the halos of SDSS galaxies at z = 0.15 - 0.35. Our chief science goal
is to establish a basic set of observational facts about the physical
state, metallicity, and kinematics of halo gas, including the sky
covering fraction of hot and cold material, the metallicity of infall
and outflow, and correlations with galaxy stellar mass, type, and
color - all as a function of impact parameter from 10 - 150 kpc.
Theory suggests that the bimodality of galaxy colors, the shape of the
luminosity function, and the mass-metallicity relation are all
influenced at a fundamental level by accretion and feedback, yet these
gas processes are poorly understood and cannot be predicted robustly
from first principles. We lack even a basic observational assessment
of the multiphase gaseous content of galaxy halos on 100 kpc scales,
and we do not know how these processes vary with galaxy properties.
This ignorance is presently one of the key impediments to
understanding galaxy formation in general. We propose to use the
high-resolution gratings G130M and G160M on the Cosmic Origins
Spectrograph to obtain sensitive column density measurements of a
comprehensive suite of multiphase ions in the spectra of 43 z 1 QSOs
lying behind 43 galaxies selected from the Sloan Digital Sky Survey.
In aggregate, these sightlines will constitute a statistically sound
map of the physical state and metallicity of gaseous halos, and
subsets of the data with cuts on galaxy mass, color, and SFR will seek
out predicted variations of gas properties with galaxy properties. Our
interpretation of these data will be aided by state-of-the-art
hydrodynamic simulations of accretion and feedback, in turn providing
information to refine and test such models. We will also use Keck,
MMT, and Magellan (as needed) to obtain optical spectra of the QSOs to
measure cold gas with Mg II, and optical spectra of the galaxies to
measure SFRs and to look for outflows. In addition to our other
science goals, these observations will help place the Milky Way's
population of multiphase, accreting High Velocity Clouds (HVCs) into a
global context by identifying analogous structures around other
galaxies. Our program is designed to make optimal use of the unique
capabilities of COS to address our science goals and also generate a
rich dataset of other absorption-line systems

STIS/CC 11845

CCD Dark Monitor Part 2

Monitor the darks for the STIS CCD.

STIS/CC 11847

CCD Bias Monitor-Part 2

Monitor the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1,
and 1x1 at gain = 4, to build up high-S/N superbiases and track the
evolution of hot columns.

STIS/CCD 11849

STIS CCD Hot Pixel Annealing

This purpose of this activity is to repair radiation induced hot pixel
damage to the STIS CCD by warming the CCD to the ambient instrument
temperature and annealing radiation-damaged pixels.

Radiation damage creates hot pixels in the STIS CCD Detector. Many of
these hot pixels can be repaired by warming the CCD from its normal
operating temperature near -83 deg. C to the ambient instrument
temperature (~ +5 deg. C) for several hours. The number of hot pixels
repaired is a function of annealing temperature. The effectiveness of
the CCD hot pixel annealing process is assessed by measuring the dark
current behavior before and after annealing and by searching for any
window contamination effects.

STIS/CCD/MA2 11568

A SNAPSHOT Survey of the Local Interstellar Medium: New NUV
Observations of Stars with Archived FUV Observations

We propose to obtain high-resolution STIS E230H SNAP observations of
MgII and FeII interstellar absorption lines toward stars within 100
parsecs that already have moderate or high-resolution far-UV (FUV),
900-1700 A, observations available in the MAST Archive. Fundamental
properties, such as temperature, turbulence, ionization, abundances,
and depletions of gas in the local interstellar medium (LISM) can be
measured by coupling such observations. Due to the wide spectral range
of STIS, observations to study nearby stars also contain important
data about the LISM embedded within their spectra. However, unlocking
this information from the intrinsically broad and often saturated FUV
absorption lines of low-mass ions, (DI, CII, NI, OI), requires first
understanding the kinematic structure of the gas along the line of
sight. This can be achieved with high resolution spectra of high-mass
ions, (FeII, MgII), which have narrow absorption lines, and can
resolve each individual velocity component (interstellar cloud). By
obtaining short (~10 minute) E230H observations of FeII and MgII, for
stars that already have moderate or high- resolution FUV spectra, we
can increase the sample of LISM measurements, and thereby expand our
knowledge of the physical properties of the gas in our galactic
neighborhood. STIS is the only instrument capable of obtaining the
required high resolution data now or in the foreseeable future.

WFC3/ACS/IR 11731

Studying Cepheid Systematics in M81: H-Band Observations

The local value of the Hubble Constant remains one of the most
important constraints in cosmology, but improving on the 10% accuracy
of the HST Key Project is challenging. No improvements will be
convincing until the metallicity dependence is well constrained and
blending effects are fully understood. M81 and its dwarf companion
Holmberg IX are superb laboratories for studying Cepheid systematics
because they contain large numbers of bright Cepheids with a good
spread in metallicity lying at a common, relatively close distance. We
have identified 180 12P 70 day Cepheids in these two galaxies using
the Large Binocular Telescope (compared to 30 in total by the KP), and
will expand the sample further in 2008-2009. We will use 10 orbits
with WFC3/IR to obtain H-band images of 100 Cepheids in M81 to add to
the ACS/BVI calibrations we will obtain from archival data and 1 orbit
with WFC3/UVIS to add B-band data for Holmberg IX. Four band BVIH
photometry will allow us to flux calibrate, estimate extinction,
measure metallicity effects and then check the results in detail. We
can also examine blending effects on WFC3/IR data in a relatively
nearby galaxy before it is applied to more distant galaxies. Our M81
sample is three times larger than the next best sample, that of
NGC4258, and suffers less from blending because M81 is at half the
distance, so it is an excellent laboratory for studying Cepheid
systematics even if it lacks as precise a geometric distance as
NGC4258.

WFC3/IR 11694

Mapping the Lnteraction Between High-Redshift Galaxies and the
Lntergalactic Environment

With the commissioning of the high-throughput large-area camera
WFC3/IR, it is possible for the first time to undertake an efficient
survey of the rest-frame optical morphologies of galaxies at the peak
epoch of star formation in the universe. We therefore propose deep
WFC3/IR imaging of over 320 spectroscopically confirmed galaxies
between redshift 1.6 z 3.4 in well-studied fields which lie along
the line of sight to bright background QSOs. The spectra of these
bright QSOs probe the IGM in the vicinity of each of the foreground
galaxies along the line of sight, providing detailed information on
the physical state of the gas at large galactocentric radii. In
combination with our densely sampled UV/IR spectroscopy, stellar
population models, and kinematic data in these fields, WFC3/IR imaging
data will permit us to construct a comprehensive picture of the
structure, dynamics, and star formation properties of a large
population of galaxies in the early universe and their effect upon
their cosmological environment.

WFC3/IR 11921

WFC3 IR PSF Wings

The IR PSF wings will be evaluated at 5 field points (near the field
center and corners) in two filters (F098M and F160W) to check for
image stability. Full frame images of a moderately bright, isolated
star will be obtained at each field position with a series of
increasing exposure times designed to permit construction of a very
high SNR PSF with dynamic range sufficient to evaluate the wing
intensity to 5 arcsec radius. The images will also permit examination
of potential straylight effects, electronic cross-talk and image
persistence.

This is a repeat of SMOV activity WFC3-26 (program 11439.) The results
of the two programs will be compared. The data will be analyzed using
the code and techniques described in ISR WFC3 2008-41 (Hartig).
Profiles of encircled energy will be compared to those obtained from
program 11439.

WFC3/IR/S/C 11929

IR Dark Current Monitor

Analyses of ground test data showed that dark current signals are more
reliably removed from science data using darks taken with the same
exposure sequences as the science data, than with a single dark
current image scaled by desired exposure time. Therefore, dark current
images must be collected using all sample sequences that will be used
in science observations. These observations will be used to monitor
changes in the dark current of the WFC3-IR channel on a day-to-day
basis, and to build calibration dark current ramps for each of the
sample sequences to be used by Gos in Cycle 17. For each sample
sequence/array size combination, a median ramp will be created and
delivered to the calibration database system (CDBS).

WFC3/UV 11906

WFC3 UVIS CCD Gain

The absolute gain of each quadrant of the WFC3 UVIS detector will be
measured for the nominal detector readout configuration and at the
on-orbit operating temperature.

WFC3/UVIS 11905

WFC3 UVIS CCD Daily Monitor

The behavior of the WFC3 UVIS CCD will be monitored daily with a set
of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K
subarray biases are acquired at less frequent intervals throughout the
cycle to support subarray science observations. The internals from
this proposal, along with those from the anneal procedure (Proposal
11909), will be used to generate the necessary superbias and superdark
reference files for the calibration pipeline (CDBS).

WFC3/UVIS 11908

Cycle 17: UVIS Bowtie Monitor

Ground testing revealed an intermittent hysteresis type effect in the
UVIS detector (both CCDs) at the level of ~1%, lasting hours to days.
Initially found via an unexpected bowtie-shaped feature in flatfield
ratios, subsequent lab tests on similar e2v devices have since shown
that it is also present as simply an overall offset across the entire
CCD, i.e., a QE offset without any discernable pattern. These lab
tests have further revealed that overexposing the detector to count
levels several times full well fills the traps and effectively
neutralizes the bowtie. Each visit in this proposal acquires a set of
three 3x3 binned internal flatfields: the first unsaturated image will
be used to detect any bowtie, the second, highly exposed image will
neutralize the bowtie if it is present, and the final image will allow
for verification that the bowtie is gone.

WFC3/UVIS/IR 11700

Bright Galaxies at z7.5 with a WFC3 Pure Parallel Survey

The epoch of reionization represents a special moment in the history
of the Universe as it is during this era that the first galaxies and
star clusters are formed. Reionization also profoundly affects the
environment where subsequent generations of galaxies evolve. Our
overarching goal is to test the hypothesis that galaxies are
responsible for reionizing neutral hydrogen. To do so we propose to
carry out a pure parallel WFC3 survey to constrain the bright end of
the redshift z7.5 galaxy luminosity function on a total area of 176
arcmin^2 of sky. Extrapolating the evolution of the luminosity
function from z~6, we expect to detect about 20 Lyman Break Galaxies
brighter than M_* at z~8 significantly improving the current sample of
only a few galaxies known at these redshifts. Finding significantly
fewer objects than predicted on the basis of extrapolation from z=6
would set strong limits to the brightness of M_*, highlighting a fast
evolution of the luminosity function with the possible implication
that galaxies alone cannot reionize the Universe. Our observations
will find the best candidates for spectroscopic confirmation, that is
bright z7.5 objects, which would be missed by small area deeper
surveys. The random pointing nature of the program is ideal to beat
cosmic variance, especially severe for luminous massive galaxies,
which are strongly clustered. In fact our survey geometry of 38
independent fields will constrain the luminosity function like a
contiguous single field survey with two times more area at the same
depth. Lyman Break Galaxies at z7.5 down to m_AB=26.85 (5 sigma) in
F125W will be selected as F098M dropouts, using three to five orbits
visits that include a total of four filters (F606W, F098M, F125W,
F160W) optimized to remove low-redshift interlopers and cool stars.
Our data will be highly complementary to a deep field search for high-
z galaxies aimed at probing the faint end of the luminosity function,
allowing us to disentangle the degeneracy between faint end slope and
M_* in a Schechter function fit of the luminosity function. We waive
proprietary rights for the data. In addition, we commit to release the
coordinates and properties of our z7.5 candidates within one month
from the acquisition of each field.


 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Daily Report Cooper, Joe Hubble 0 December 22nd 08 05:17 PM
Daily Report #4482 Cooper, Joe Hubble 0 November 5th 07 03:11 PM
Daily Report #4468 Cooper, Joe Hubble 0 October 16th 07 04:28 PM
Daily Report [email protected] Hubble 0 October 29th 04 04:59 PM
HST Daily Report 131 George Barbehenn Hubble 0 May 11th 04 02:48 PM


All times are GMT +1. The time now is 06:28 AM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.