A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Others » Misc
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

more candidate cosmic string lens pairs in HUDF (re comment by Levon Pogosian on astro-ph/0506400); also myriad minute bright blue sources, always on dark background mesh: Murray 2005.08.19



 
 
Thread Tools Display Modes
  #1  
Old August 19th 05, 09:01 AM
Rich Murray
external usenet poster
 
Posts: n/a
Default more candidate cosmic string lens pairs in HUDF (re comment by Levon Pogosian on astro-ph/0506400); also myriad minute bright blue sources, always on dark background mesh: Murray 2005.08.19

************************************************** ***********

http://groups.yahoo.com/group/AstroDeep/12
more candidate cosmic string lens pairs in HUDF (re comment by Levon
Pogosian on astro-ph/0506400); also myriad minute bright blue sources,
always on dark background mesh: Murray 2005.08.19

http://groups.yahoo.com/group/AstroDeep/11
subtle background structure in deep astronomy photos; CSL-1 cosmic string
gravitational lens in Capodimonte Deep Field; Millennium Simulation of
evolving cosmic structure; AstroDeep group; Murray mesh; www.Flickr.com
photo archive: Murray 2005.06.10


Since Dec 2001, I have been color shifting deep cosmic astronomy photos to
reveal mysterious, fascinating, and unexplained subtle background structu
appears to be a very distant 3D fractile tangle of dark and light spots,
threads, and lines, behind all galaxies, which I named 'Murray mesh' in
January 2002.

www.Flickr.com allows unlimited numbers of up to 10 MB images to be shared
forever, along with viewer comments.

http://www.flickr.com/photos/rmforall/

I have uploaded 17 images from the Capodimonte Deep Field that include CSL-1
and two of the other proposed 11 possible cosmic lens pairs,
then 2 images from the Millenium Simulation that show the cosmic background
of complex filaments,
and then 10 images from the Hubble Ultra Deep Field.

There are many bright blue pairs in the background of HUDF, one of which I
named RML-1, and a universal background of minute bright blue sources,
always on the extremely distant dark mesh -- the highest magnification is
image #21.
Increasing magnifications of this field are provided:


http://photos13.flickr.com/19047521_8b74c0fde7_o.png #20

http://photos14.flickr.com/19067873_6d8570e64c_o.png #22

http://photos15.flickr.com/19067874_7251affb8d_o.png #23

http://photos13.flickr.com/19717874_18d6b931b4_o.png #24

http://photos14.flickr.com/19726818_0e768be01d_o.png #25


http://photos14.flickr.com/19054951_53c914b123.jpg #21 medium size

http://photos14.flickr.com/19054951_53c914b123_o.png #21 large size

#21 Closeup of possible cosmic string gravitational lens, the blue galaxy
pair, very similar to CSL-1, just above yellow galaxy in lower left corner
of #20 and #22, magenta in #23. I call it RML-1, Rich Murray Lens 1.

The 125 X 125 pixel field was cropped from #23, and expanded to fit the
page, and saved as tif 2.25 MB and this png .087 MB image.

The pixels are .03 arc-second each, so that the original Hubble Ultra Deep
Field, 6200 X 6200 pixels, is 186 X 186 arc-seconds, 3.1 X 3.1 arc-minutes,
a tenth of the diameter of the Full Moon or the Sun, 0.5 degrees,
30 arc-minutes.

This view is 125 X 125 p, 3.75 X 3.75 sec. The length of the dumbbell shape
of the two blue galaxies is 1/9 of the 125 p width of the view, 14 X 7 p,
0.4 X 0.2 sec.

Notice the background scatter of bright blue sources, 1 to 2 pixel size, and
the dark background 3D mesh.

The bright blue sources, like tiny Christmas lights, are always on the dark
3D mesh.

I surmise that they are very early hypernovae (early quasars),
or possibly the more recent generation of the first dwarf galaxies, with
high formation rates of extremely massive, ultraviolet bright stars.

The putative greater density of cosmic strings should result in a much
greater density of exact mirror image sources in these early epoches.

If you peer closely through a 3.5 inch reading glass with both eyes at these
images on the screen or as a color print, the opposite sides of the wide
lens will act as opposed prisms, separating out the colors enough to create
a very lovely and revealing 3D texture to the image, which can be scanned
thorougly, easily, and quickly to interpret the various levels of
structure --
the colors tend to code for the temperatures and redshifts of the sources.
Moving the wide lens in and out of focus allows convenient
variation of the apparent resolution.

Rich Murray, MA Room For All 505-501-2298
1943 Otowi Road Santa Fe, New Mexico 87505 USA
http://groups.yahoo.com/group/AstroDeep/
************************************************** ***********

http://www.physcomments.org/node/330#comment-14

astro-ph/0506400--Further spectroscopic observations of the CSL-1 object
Submitted by Referenced Author on Mon, 2005-07-11 10:32. astro-ph

CSL-1 (Capodimonte Sternberg Lens Candidate no 1) first detected at
Osservatorio Astronomico di Capodimonte - Deep Field is an extragalactic
double source with the two images 1.9 arcsec apart. The two sources match
the properties of two giant elliptical galaxies at redshift z=0.46. However,
a detailed analysis in the original paper, Sazhin et al, astro-ph/0302547,
MNRAS (Paper I), provided strong evidence that these two objects are lensed
images of the same galaxy. As shown in Paper I, the spectra of the two
components were nearly identical (at 99.9% confidence level) and there was
no evidence for a relative velocity between the sources. The limited
resolution, however, did not allow the authors to completely rule out the
possibility of a chance alignment of two separate galaxies.

What sets CSL-1 apart from other lensing candidates is the near perfect
symmetry of the two images. These are two well-resolved round bright sources
that look very much like reflections of each other around an axis passing
between them. If it was confirmed that this, in fact, is a lensed object, it
would be very hard to find a known lens that could cause such a perfectly
symmetric image. A lens candidate put forward in Paper I was a cosmic string
and, as far as I know, there have been no alternative candidates. A
discovery of a cosmic string would be a major breakthrough in science with
wide-ranging implications. Before one starts talking about strings however,
it has to be confirmed that CSL-1 is, indeed, two images of the same object
(one should also find an increased number of lensing events in the vicinity
of CSL-1. This may actually be the case, as reported by Sazhin et al in
another paper, astro-ph/0406516).

The aim of this paper is to strengthen the case made in Paper I for CSL-1
being a lensed image. It reports results of observation and analysis of
CSL-1 using a different telescope (ESO Very Large Telescope) and a different
spectrograph. The methods are very much similar to those in Paper I. The
main improvement appears to be the increase in the resolution with which the
two images could be studied. The paper confirms the lensing hypothesis at a
``higher than 99.9%'' confidence level.

Within a year, CSL-1 will be observed by the Hubble Space Telescope (HST)
with a superb resolution and the authors of this paper are among the
co-recipients of the HST time allocation. If the HST confirms that CSL-1 is
two images of the same object, it will provide an exciting puzzle for us to
solve. And, who knows, we may end up discovering a cosmic string after all!

Levon Pogosian Department of Physics and Astronomy Tufts University Medford,
MA 02155, USA
************************************************** ***********


 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Cosmic strings observed? Lubos Motl Astronomy Misc 0 December 19th 04 02:02 AM


All times are GMT +1. The time now is 12:51 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.