A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily Rpt #4464



 
 
Thread Tools Display Modes
  #1  
Old October 10th 07, 08:26 PM posted to sci.astro.hubble
Bassford, Lynn
external usenet poster
 
Posts: 44
Default Daily Rpt #4464

Notice: Due to the conversion of some ACS WFC or HRC observations into
WFPC2, or NICMOS observations after the loss of ACS CCD science
capability in January, there may be an occasional discrepancy between
a proposal's listed (and correct) instrument usage and the abstract
that follows it.

HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

DAILY REPORT*** # 4464

PERIOD COVERED: UT October 09, 2007 (DOY 282)

OBSERVATIONS SCHEDULED

ACS/SBC WFPC2 11175

UV Imaging to Determine the Location of Residual Star Formation in
Galaxies Recently Arrived on the Red Sequence

We have identified a sample of low-redshift {z = 0.04 - 0.10} galaxies
that are candidates for recent arrival on the red sequence. They have
red optical colors indicative of old stellar populations, but blue
UV-optical colors that could indicate the presence of a small quantity
of continuing or very recent star formation. However, their spectra
lack the emission lines that characterize star-forming galaxies. We
propose to use ACS/SBC to obtain high- resolution imaging of the UV
flux in these galaxies, in order to determine the spatial distribution
of the last episode of star formation. WFPC2 imaging will provide B,
V, and I photometry to measure the main stellar light distribution of
the galaxy for comparison with the UV imaging, as well as to measure
color gradients and the distribution of interstellar dust. This
detailed morphological information will allow us to investigate the
hypothesis that these galaxies have recently stopped forming stars and
to compare the observed distribution of the last star formation with
predictions for several different mechanisms that may quench star
formation in galaxies.

NIC1/NIC2/NIC3 8793

NICMOS Post-SAA calibration - CR Persistence Part 4

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be non-
standard reference files available to users with a USEAFTER date/time
mark. The keyword 'USEAFTER=date/time' will also be added to the
header of each POST-SAA DARK frame. The keyword must be populated with
the time, in addition to the date, because HST crosses the SAA ~8
times per day so each POST-SAA DARK will need to have the appropriate
time specified, for users to identify the ones they need. Both the raw
and processed images will be archived as POST-SAA DARKSs. Generally we
expect that all NICMOS science/calibration observations started within
50 minutes of leaving an SAA will need such maps to remove the CR
persistence from the science images. Each observation will need its
own CRMAP, as different SAA passages leave different imprints on the
NICMOS detectors.

NIC2 11143

NICMOS imaging of submillimeter galaxies with CO and PAH redshifts

We propose to obtain F110W and F160W imaging of 10 z~2.4 submillimeter
galaxies {SMGs} whose optical redshifts have been confirmed by the
detection of millimeter CO and/or mid-infrared PAH emission. With the
4000A break falling within/between the two imaging filters, we will be
able to study these sources' spatially resolved stellar populations
{modulo extinction} in the rest-frame optical. SMGs' large
luminosities appear to be due largely to merger-triggered starbursts;
high-resolution NICMOS imaging will help us understand the stellar
masses, mass ratios, and other properties of the merger progenitors,
valuable information in the effort to model the mass assembly history
of the universe.

NIC2 11155

Dust Grain Evolution in Herbig Ae Stars: NICMOS Coronagraphic Imaging
and Polarimetry

We propose to take advantage of the sensitive coronagraphic
capabilities of NICMOS to obtain multiwavelength coronagraphic imaging
and polarimetry of primordial dust disks around young
intermediate-mass stars {Herbig Ae stars}, in order to advance our
understanding of how dust grains are assembled into larger bodies.
Because the polarization of scattered light is strongly dependent on
scattering particle size and composition, coronagraphic imaging
polarimetry with NICMOS provides a uniquely powerful tool for
measuring grain properties in spatially resolved circumstellar disks.
It is widely believed that planets form via the gradual accretion of
planetesimals in gas-rich, dusty circumstellar disks, but the
connection between this suspected process and the circumstellar disks
that we can now observe around other stars remains very uncertain. Our
proposed observations, together with powerful 3-D radiative transfer
codes, will enable us to quantitatively determine dust grain
properties as a function of location within disks, and thus to test
whether dust grains around young stars are in fact growing in size
during the putative planet-formation epoch. HST imaging polarimetry of
Herbig Ae stars will complement and extend existing polarimetric
studies of disks around lower-mass T Tauri stars and debris disks
around older main-sequence stars. When combined with these previous
studies, the proposed research will help us establish the influence of
stellar mass on the growth of dust grains into larger planetesimals,
and ultimately to planets. Our results will also let us calibrate
models of the thermal emission from these disks, a critical need for
validating the properties of more distant disks inferred on the basis
of spectral information alone.

NIC3 11082

NICMOS Imaging of GOODS: Probing the Evolution of the Earliest Massive
Galaxies, Galaxies Beyond Reionization, and the High Redshift Obscured
Universe

(uses ACS/SBC and WFPC2)

Deep near-infrared imaging provides the only avenue towards
understanding a host of astrophysical problems, including: finding
galaxies and AGN at z 7, the evolution of the most massive galaxies,
the triggering of star formation in dusty galaxies, and revealing
properties of obscured AGN. As such, we propose to observe 60 selected
areas of the GOODS North and South fields with NICMOS Camera 3 in the
F160W band pointed at known massive M 10^11 M_0 galaxies at z 2
discovered through deep Spitzer imaging. The depth we will reach {26.5
AB at 5 sigma} in H_160 allows us to study the internal properties of
these galaxies, including their sizes and morphologies, and to
understand how scaling relations such as the Kormendy relationship
evolved. Although NIC3 is out of focus and undersampled, it is
currently our best opportunity to study these galaxies, while also
sampling enough area to perform a general NIR survey 1/3 the size of
an ACS GOODS field. These data will be a significant resource,
invaluable for many other science goals, including discovering high
redshift galaxies at z 7, the evolution of galaxies onto the Hubble
sequence, as well as examining obscured AGN and dusty star formation
at z 1.5. The GOODS fields are the natural location for HST to
perform a deep NICMOS imaging program, as extensive data from space
and ground based observatories such as Chandra, GALEX, Spitzer, NOAO,
Keck, Subaru, VLT, JCMT, and the VLA are currently available for these
regions. Deep high-resolution near-infrared observations are the one
missing ingredient to this survey, filling in an important gap to
create the deepest, largest, and most uniform data set for studying
the faint and distant universe. The importance of these images will
increase with time as new facilities come on line, most notably WFC3
and ALMA, and for the planning of future JWST observations.

WFPC2 11178

Probing Solar System History with Orbits, Masses, and Colors of
Transneptunian Binaries

The recent discovery of numerous transneptunian binaries {TNBs} opens
a window into dynamical conditions in the protoplanetary disk where
they formed as well as the history of subsequent events which sculpted
the outer Solar System and emplaced them onto their present day
heliocentric orbits. To date, at least 47 TNBs have been discovered,
but only about a dozen have had their mutual orbits and separate
colors determined, frustrating their use to investigate numerous
important scientific questions. The current shortage of data
especially cripples scientific investigations requiring statistical
comparisons among the ensemble characteristics. We propose to obtain
sufficient astrometry and photometry of 23 TNBs to compute their
mutual orbits and system masses and to determine separate primary and
secondary colors, roughly tripling the sample for which this
information is known, as well as extending it to include systems of
two near-equal size bodies. To make the most efficient possible use of
HST, we will use a Monte Carlo technique to optimally schedule our
observations.

WFPC2 11227

The orbital period for an ultraluminous X-ray source in NGC1313

The ultraluminous X-ray sources {ULXs} are extragalactic point sources
with luminosities that exceed the Eddington luminosity for
conventional stellar-mass black holes by factors of 10 - 100. It has
been hotly debated whether the ULXs are just common stellar-mass black
hole sources with beamed emission or whether they are sub-Eddington
sources that are powered by the long-sought intermediate mass black
holes {IMBH}. To firmly decide this question, one must obtain
dynamical mass measurements through photometric and spectroscopic
monitoring of the secondaries of these system. The crucial first step
is to establish the orbital period of a ULX, and arguably the best way
to achieve this goal is by monitoring its ellipsoidal light curve. The
extreme ULX NGC1313 X-2 provides an outstanding target for an orbital
period determination because its relatively bright optical counterpart
{V = 23.5} showed a 15% variation between two HST observations
separated by three months. This level of variability is consistent
with that expected for a tidally distorted secondary star. Here we
propose a set of 20 imaging observations with HST/WFPC2 to define the
orbital period. This would be the first photometric measurement of the
orbital period of a ULX binary. Subsequently, we will propose to
obtain spectroscopic observations to obtain its radial velocity
amplitude and thereby a dynamical estimate of its mass.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.)

HSTARS:

#11017* REAcq(2,1,1) Failed due to Scan step Limit Exceeded on FGS3
@282/1256z

At 282/12:56:00 REAcq (2,1,1) scheduled from 282/12:53:02-13:00:11
failed due to Scan Step Limit Exceeded on FGS 2.
OBAD #1: V1 -507.67, V2 -727.65, V3 220.50, RSS 914.23
OBAD #2: V1 0.31, V2 0.80, V3 0.22, RSS 0.89
OBAD MAP: Not scheduled

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)

************************* SCHEDULED***** SUCCESSFUL
FGS GSacq****************** 08************ 08
FGS REacq****************** 07************ 06
OBAD with Maneuver**** 30************ 30

SIGNIFICANT EVENTS: (None)


 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Daily #4056 Joe Cooper Hubble 0 February 23rd 06 04:27 PM
Daily #4041 Joe Cooper Hubble 0 February 2nd 06 02:35 PM
Daily #4040 Joe Cooper Hubble 0 February 1st 06 02:55 PM
Daily #4039 Joe Cooper Hubble 0 January 31st 06 02:39 PM
Daily #4038 Joe Cooper Hubble 0 January 30th 06 04:18 PM


All times are GMT +1. The time now is 10:37 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.