If this is your first visit, be sure to check out the FAQ by clicking the link above. You may have to register before you can post: click the register link above to proceed. To start viewing messages, select the forum that you want to visit from the selection below. 


Thread Tools  Display Modes 
#1




Revise age of the universe?
Can the recent findings of the Space Telescope Institute be used
to revise the age of the universe. What would the estimate of 13.7E9 years become if the current rate of acceleration obtained over the entire lifetime? 
Ads 
#2




Revise age of the universe?
In article , root
writes:=20 Can the recent findings of the Space Telescope Institute be used to revise the age of the universe. What would the estimate of 13.7E9 years become if the current rate of acceleration obtained over the entire lifetime? If you are talking about changing only the Hubble constant (I think that=20 you are), then the ageall else assumed equalis inversely=20 proportional to the hubble constant. However, keep in mind that we are=20 talking about a change of a few per cent (I am assuming that you are=20 comparing relatively local HST measurements to the value obtained from=20 CMB observations). If the current rate of acceleration applied over the entire lifetime=20 (there is no reason to think that this is even remotely true), then the=20 size of the universe as a function of time would be an exponential=20 function and thus be infinitely old. 
#3




Revise age of the universe?
[Moderator's note: I have tried to transform 8bit characters to
something more legible. Please post only 7bit printable ASCII characters. P.H.] root wrote: ^^^^ Please post here using your real name. Can the recent findings of the Space Telescope Institute be used to revise the age of the universe. Yes, if those findings were *conclusive*, i.e. would mean that the Hubble constant *definitely* is greater, then that would mean that our universe would be slightly younger than previously thought (see below). However, different from the *wrong* popularscientific accounts, the HST estimate merely shows that there might be something fundamental that we do not yet understand about the universal expansion because different *recent* measurement methods produced so many different estimates for the Hubble constant: https://en.wikipedia.org/wiki/Hubble%27s_law#Observed_values_of_the_Hubble_const ant Previously one could have thought (and IIUC it had been thought) that the precision of the experiments were just not so good in the past, but now we have for the Hubble constant e.g. 67.66±0.42 (km/s)/Mpc by \_Planck_/ in 2018 (obtained from observing the CMB) and 74.03Â1.42 (km/s)/Mpc by HST in 2019 (obtained from observing cepheids in the LMC). At some point in time the estimates should converge to one value, but apparently they do not. These accounts should be a reliable description of what was really found and concluded by the HST scientists: https://www.nasa.gov/feature/goddard/2019/mysteryoftheuniversesexpansionratewidenswithnewhubbledata https://www.spacetelescope.org/news/heic1908/ I think that the following much less hysterically written article sums up and clarifies in laymen terms the *misconceptions*/*misrepresentations* about the HST result as published in the rest of the nonscientific media (Business Insider, CBC, Daily Star, Digital Trends, Heise Newsticker, Science Alert, Sputnik News etc.) pretty well: https://gizmodo.com/hubblemeasurementsconfirmtheressomethingweirdabou1834339830 What would the estimate of 13.7E9 years The previous estimate was already 13.796p±0.020 * 10^9 years (Planck Collaboration 2018: TT,TE,EE+lowE+lensing+BA 68 % limits [1]), which is "13.8E9 years" when properly rounded. become if the current rate of acceleration obtained over the entire lifetime? In that case I will leave the calculation to you, because you *can* do it Because in that case the age of our universe is easily obtained as the reciprocal of the Hubble constant: t = 1/H_0. [Moderator's note: True if the current RATE of expansion were constant, but not if the current ACCELERATION were constant. P.H.] Note that the Hubble constant is a speed per distance, usually specified in units of (km/s)/Mpc, which is a length over time over a length, and therefore has dimensions of 1/[time]. [3] However, this simple calculation definitely produces the wrong value (sorry ;)) because we know from observation that the speed of expansion was and is not constant over time. Instead, the Hubble constant is merely the value of the timedependent Hubble *parameter* H(t) = a'(t)/a(t) *now*, at the *current* time: H(t=t_0) = a'(t=t_0)/a(t=t_0) = H_0, where a(t) is the scale factor of our universe at time t. [Moderator's note: Actually, the deceleration and acceleration almost balance so that the age of the universe is very close to the Hubble time. In our universe, this happens only near the present epoch. There have been a couple of papers addressing this coincidence. P.H.] For example, if you use the Planck Collaboration's 2015 value of H_0 = 67.31 (km/s)/Mpc (TT+lowP) [1], with 1/H_9 = 14.5 Ga you do NOT obtain Planck's corresponding t_0 = 13.813 Ga but something considerably larger. Therefore I think that obtaining the correct age is not trivial: you would have to solve an integral of a function over time that involves the Hubble parameter. That function needs to be designed such that it fits the actual development of the past expansion speed as obtained from theory and/or observation of distant objects: https://en.wikipedia.org/wiki/Universe#/media/File:CMB_Timeline300_no_WMAP.jpg [Moderator's note: It is an elliptic integral, so somewhat nontrivial analytically, but well known, and can also be done numerically. P.H.] Note in this 2006 depiction of an inflationary LambdaCDM model (based on WMAP data) the extreme expansion speed in the epoch of inflation (as per the theory of cosmic inflation) in the first 10â¹ years; then a moderate, almost linear expansion until our universe was 13 Ã=97 10â¹ years old, followed by an accelerated expansion due to Dark Energy (Î=9B) since about 770 Ã=97 10â¶ years ago. [Moderator's note: Due to the nonASCII characters, I'm not sure what was meant, but in any case the age of the universe is essentially independent of inflation since that lasted only a fraction of a second. P.H. There was deceleration until a few billion years ago and since then acceleration.] See also (highly recommended): Tamara M. DAVIS & Charles H. LINEWEAVER (2003). Expanding Confusion: common misconceptions of cosmological horizons and the superluminal expansion of the Universe. https://arxiv.org/abs/astroph/0310808v2 _______ [1] https://en.wikipedia.org/wiki/Age_of_the_universe#Planck [2] ESO (2018): Planck 2018 results. VI. Cosmological parameters. https://arxiv.org/pdf/1807.06209.pdf [3] Lawrence M. Krauss (2017): Physics Made Easy. Tomasa Terry. https://youtu.be/bywYBtkfsWA?t=2636 (I recommend the entire talk)  PointedEars Twitter: @PointedEars2 Please do not cc me. / Bitte keine Kopien per EMail. 
#4




Revise age of the universe?
On 4/28/19 9:06:40 PM, root wrote:
Can the recent findings of the Space Telescope Institute be used to revise the age of the universe. What would the estimate of 13.7E9 years become if the current rate of acceleration obtained over the entire lifetime? The main point of the Space Telescope Institute work https://arxiv.org/abs/1903.07603 is that 4.4 sigma discrepancy between Planck Ho and STI Ho 'is not readily attributable to an error in any one source or measurement, increasing the odds that it results from a cosmological feature beyond LambdaCDM'. 
#5




Revise age of the universe?
Thomas 'PointedEars' Lahn wrote:
root wrote: become if the current rate of acceleration obtained over the entire lifetime? In that case I will leave the calculation to you, because you *can* do it Because in that case the age of our universe is easily obtained as the reciprocal of the Hubble constant: t = 1/H_0.  Moderator's note: True if the current RATE of expansion were constant,  but not if the current ACCELERATION were constant. P.H. The OP was not even talking about the `current acceleration', but the `current rate of acceleration'.  Moderator's note: Actually, the deceleration and acceleration almost  balance so that the age of the universe is very close to the Hubble  time. In our universe, this happens only near the present epoch. There  have been a couple of papers addressing this coincidence. P.H. For example, if you use the Planck Collaboration's 2015 value of H_0 = 67.31 (km/s)/Mpc (TT+lowP) [1], with 1/H_9 = 14.5 Ga you do NOT obtain Planck's corresponding t_0 = 13.813 Ga but something considerably larger. I think I have shown here that the moderator's statement is not true. A difference of several hundred million years is NOT "very close". Note in this 2006 depiction of an inflationary LambdaCDM model (based on WMAP data) the extreme expansion speed in the epoch of inflation (as per the theory of cosmic inflation) in the first 10^9 years; then a moderate, almost linear expansion until our universe was 13 * 10^9 years old, followed by an accelerated expansion due to Dark Energy (Lambda) since about 770 * 10^6 years ago.  but in any case the age of the universe is essentially  independent of inflation since that lasted only a fraction of a second.  P.H. There was deceleration until a few billion years ago and since  then acceleration. So the image I referred to is imprecise in that regard? 
#6




Revise age of the universe?
In article , Thomas
'PointedEars' Lahn writes: Thomas 'PointedEars' Lahn wrote: root wrote: become if the current rate of acceleration obtained over the entire lifetime? In that case I will leave the calculation to you, because you *can* do it Because in that case the age of our universe is easily obtained as the reciprocal of the Hubble constant: t = 1/H_0.  Moderator's note: True if the current RATE of expansion were constant,  but not if the current ACCELERATION were constant. P.H. The OP was not even talking about the `current acceleration', but the `current rate of acceleration'. Right, but what did he mean? There might be a language problem. I took "current rate of acceleration" to mean "current value of the acceleration". It certainly can't mean "current rate of expansion" (at least without even bigger language problems). Richard Nixon once said that while he was president, the rate of increase of inflation had gone down. A journalist quipped that this was the only occasion when a President of the United States made use of the third derivative.  Moderator's note: Actually, the deceleration and acceleration almost  balance so that the age of the universe is very close to the Hubble  time. In our universe, this happens only near the present epoch. There  have been a couple of papers addressing this coincidence. P.H. For example, if you use the Planck Collaboration's 2015 value of H_0 = 67.31 (km/s)/Mpc (TT+lowP) [1], with 1/H_9 = 14.5 Ga you do NOT obtain Planck's corresponding t_0 = 13.813 Ga but something considerably larger. I think I have shown here that the moderator's statement is not true. A difference of several hundred million years is NOT "very close". There are at least two papers on arXiv on this topic, one by Geraint Lewis, Pim van Orschok (not sure of the spelling), and possibly more authors, and one by Bob Kirshner and a coauthor. The degree of coincidence is independent of the Hubble constant, but of course depends on the values of lambda and Omega used. (The second paper has an obvious title; the first is also about something else, but the title isn't obvious.) I can't check now but they can probably be found at arXiv.org in less than a minute. Note in this 2006 depiction of an inflationary LambdaCDM model (based on WMAP data) the extreme expansion speed in the epoch of inflation (as per the theory of cosmic inflation) in the first 10^9 years; then a moderate, almost linear expansion until our universe was 13 * 10^9 years old, followed by an accelerated expansion due to Dark Energy (Lambda) since about 770 * 10^6 years ago.  but in any case the age of the universe is essentially  independent of inflation since that lasted only a fraction of a second.  P.H. There was deceleration until a few billion years ago and since  then acceleration. So the image I referred to is imprecise in that regard? Not imprecise; it's just that inflation is irrelevant. It happened in much less than a second, so whether or not it happened doesn't much affect the age of the universe today, which is based on the values of lambda, Omega, and H measured today (from which their values at all other times follow). 
#8




Revise age of the universe?
In article ,
"Richard D. Saam" writes: The main point of the Space Telescope Institute work https://arxiv.org/abs/1903.07603 is that 4.4 sigma discrepancy between Planck Ho and STI Ho is not readily attributable to an error in any one source or measurement, increasing the odds that it results from a cosmological feature beyond LambdaCDM'. Indeed. Whatever it is, it doesn't seem to be statistics. The preprint (linked above) gives references to other work on the CMB and BAO, which methods give the HubbleLemaitre parameter at high redshift, i.e., early in the history of the Universe. A simple summary is that dark energy appears to have increased over cosmological time. Fig 4 of the preprint gives some ideas of why that might have happened. Another possibility, of course, is that there is some unrecognized systematic error in one of the measurements. The local H_0 looks pretty solid to me. I know less about the early H but can't help wondering about the calculated soundwave distances, which depend on baryonic physics. For calculating cosmological quantities, Ned Wright's calculator at http://www.astro.ucla.edu/~wright/CosmoCalc.html or the advanced calculator at http://www.astro.ucla.edu/~wright/ACC.html are terrific resources.  Help keep our newsgroup healthy; please don't feed the trolls. Steve Willner Phone 6174957123 Cambridge, MA 02138 USA 
#9




Revise age of the universe?
In article , Steve Willner
writes:=20 In article , "Richard D. Saam" writes: The main point of the Space Telescope Institute work https://arxiv.org/abs/1903.07603 is that 4.4 sigma discrepancy between Planck Ho and STI Ho is not=20 readily attributable to an error in any one source or measurement,=20 increasing the odds that it results from a cosmological feature beyond= =20 LambdaCDM'. =20 Indeed. Whatever it is, it doesn't seem to be statistics. For historical reasons (remember the famous factor of 2?), people could=20 be forgiven for thinking that H_0 discrepancies would clear upat=20 least for a while. This seems a real lowz vs. highz issue, not an=20 issue with who is observing how and so on. It also doesn't seem to be=20 driven by prejudices. (I had the pleasure of hearing Allan Sandage=20 lecture at a SaasFee school back in 1993. The published version, in=20 The Deep Universe (together with contributions by the other two=20 lecturers, Malcolm Longair and Rich Kron), is an excellent introduction=20 to observational cosmology. In person, it was extremely clear that he=20 took the Einsteinde Sitter universe as given, due to inflation, which=20 of course means that H_0 has to be low to avoid the age problem. With=20 regard to observations, he was careful and critical (if sometimes=20 wrong), but here he drunk the inflation koolaid hook, line, and sinker=20 (if I can be allowed to mix metaphors). There is a workshop in Chicago in October on H_0 discrepancies. The preprint (linked above) gives references to other work on the CMB and BAO, which methods give the HubbleLemaitre parameter at high redshift, i.e., early in the history of the Universe. A simple summary is that dark energy appears to have increased over cosmological time. =20 If dark energy can vary, then many things are possible, especially since=20 we have no idea why it should vary in a particular way (common=20 parameterizations are not based on any sort of theory). Fig 4 of the preprint gives some ideas of why that might have happened. Another possibility, of course, is that there is some unrecognized systematic error in one of the measurements. The local H_0 looks pretty solid to me. I know less about the early H but can't help wondering about the calculated soundwave distances, which depend on baryonic physics. I recently ran across this: @ARTICLE { PFleuryDU13a , AUTHOR =3D "Pierre Fleury and H\'el\`ene Dupuy and" JeanPhilippe Uzan, TITLE =3D "Can All Cosmological Observations Be Accurately Interpreted with a Unique Geometry", JOURNAL =3D PRL, YEAR =3D "2013", VOLUME =3D "111", NUMBER =3D "9", PAGES =3D "091302", MONTH =3D aug } Here is my summary based on a quick glance: They suggest that the well known `tension' between Planck and the mz relation for type Ia supernovae can be relieved if the calculations are done with a Swisscheese model. This is because the CMB data have a typical angular scale of 5 arcmin while the typical angular size of a supernova is $10^{7}$ arcsec. If the Swisscheese model is more appropriate, but a homogeneous model assumed, then one will underestimate H_0 and overestimate Omega_0.=20 Keep in mind that H_0 and Omega_0 are correlated in the CMB data. The Swisscheese model takes a FriedmannLemaitreRobertsonWalker (FLRW) universe and removes some matter at certain places (creating the holes), which is then placed in the center of the resulting hollow spheres, either as a point mass, a spherical mass smaller than the hole, or even something like an FLRW model inside the hole. This is not a=20 particularly accurate model for the universe, but it does have the=20 advantage of being an exact solution to the Einstein equations, so one=20 does not have to worry about the validity of approximations used in=20 other approaches (such as that used by Zeldovich, which is often known=20 as the DyerRoeder or ZKDR distance (the K being Kantowskii, who was=20 also one of the pioneers of this subject, and the D perhaps representing=20 Dashevskii instead, who was on two of the three early Soviet papers on=20 this topic (Zeldovich, Dashevskii & Zeldovich, Dashevskii and Slysh))). There is a huge literature on such inhomogeneous models (and also on=20 more exotic inhomogeneous models), but I haven't notice that they have=20 been paid much attention in this context. 
Thread Tools  
Display Modes  


Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
R(t) for Observable_Today, Universe for early universe ages  [email protected]  Research  2  December 13th 16 10:10 PM 
Number of Stars in Universe as f(age of universe)?  [email protected]  Research  2  November 27th 16 07:33 AM 
Finite Universe  Infinite Universe.  G=EMC^2 Glazier[_1_]  Misc  0  June 16th 09 01:09 PM 
Revise human history and how states like the CCCP were predicted tocome by Spencer in 1860.  gb[_3_]  Astronomy Misc  0  March 19th 08 08:09 AM 
Infinite Universe versus volatile Universe  G. L. Bradford  Policy  3  June 21st 06 12:49 PM 