A Space & astronomy forum. SpaceBanter.com

If this is your first visit, be sure to check out the FAQ by clicking the link above. You may have to register before you can post: click the register link above to proceed. To start viewing messages, select the forum that you want to visit from the selection below.

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Research
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

How well do we know the value of G?



 
 
Thread Tools Display Modes
  #1  
Old March 10th 21, 10:09 AM posted to sci.physics.research,sci.astro.research
Phillip Helbig
external usenet poster
 
Posts: 38
Default How well do we know the value of G?

How well do we know the value of G?

G is the constant (well, as far as we know) of nature whose value is
known with the least precision. How well do we know it? Presumably
only Cavendish-type experiments can measure it directly. Other
measurements of G, particularly astronomical ones, probably actually
measure GM, or GMm. In some cases, those quantities might be known to
more precision than G itself.

Suppose G were to vary with time, or place, or (thinking of something
like MOND here) with the acceleration in question. Could that be
detected, or would it be masked by wrong assumptions about the mass(es)
involved?

Just as an example, would a smaller value of G and correspondingly
higher masses be compatible with LIGO observations?

Ads
  #2  
Old March 10th 21, 03:16 PM posted to sci.physics.research,sci.astro.research
Michael F. Stemper[_2_]
external usenet poster
 
Posts: 1
Default How well do we know the value of G?

On 10/03/2021 04.09, Phillip Helbig (undress to reply) wrote:
How well do we know the value of G?

G is the constant (well, as far as we know) of nature whose value is
known with the least precision. How well do we know it? Presumably
only Cavendish-type experiments can measure it directly. Other
measurements of G, particularly astronomical ones, probably actually
measure GM, or GMm. In some cases, those quantities might be known to
more precision than G itself.

Suppose G were to vary with time, or place, or (thinking of something
like MOND here) with the acceleration in question.


This question sent me on a search for error bars, starting with my
college physics text. The more I looked, the more varied values I found,
including 2010 CODATA and 2018 CODATA.

Then, I came across this page:
https://phys.org/news/2015-04-gravitational-constant-vary.html

TL;DR: Measured values of G seem to vary with a period of about 5.9
years.

I think that there's a Nobel out there for whoever explains this
phenomenon (assuming that it really exists).

--
Michael F. Stemper
You can lead a horse to water, but you can't make him talk like Mr. Ed
by rubbing peanut butter on his gums.

[Moderator's note: The month is April, but the date is not the first.
So the article seems to be meant seriously. My own chi-by-eye indicates
that the statistical significance of the period might not be high
enough, but I haven't investigated that in detail. The article mentions
"density variations [in the Earth], affecting G". They must mean
"affecting g". Later in the article, the difference between G and g is
pointed out, but they seem to have got it wrong here. Obviously, if g
varies, one could falsely ascribe it to a varying G, which seems to be
the main point of the article. By chance, I came across an interesting
paper today (see URL below) which asks the question what the probability
is that two measurements bracket the true value (assuming random
errors). Many or most might intuitively think that the probability is
rather high that the true value is between the two measurements, but
actually the probability is one half. (Note that the entire Physics
Today arXiv is, at least for a while, freely available for those who
register. https://physicstoday.scitation.org/d...1063/1.3057731
-P.H.]

  #3  
Old March 11th 21, 07:20 AM posted to sci.physics.research,sci.astro.research
Steven Carlip
external usenet poster
 
Posts: 9
Default How well do we know the value of G?

On 3/10/21 2:09 AM, Phillip Helbig (undress to reply) wrote:
How well do we know the value of G?

G is the constant (well, as far as we know) of nature whose value is
known with the least precision. How well do we know it? Presumably
only Cavendish-type experiments can measure it directly. Other
measurements of G, particularly astronomical ones, probably actually
measure GM, or GMm. In some cases, those quantities might be known to
more precision than G itself.

Suppose G were to vary with time, or place, or (thinking of something
like MOND here) with the acceleration in question. Could that be
detected, or would it be masked by wrong assumptions about the mass(es)
involved?


The idea that G may vary in time goes back to Dirac's "large
numbers hypothesis" in the 1930s. There's been a huge amount of
experimental and observational investigation. A classic review
article is Uzan, arXiv:hep-ph/0205340; a more recent version is
arXiv:1009.5514. There are quite strong constraints on time
variation, and some weaker constraints on spatial variation,
coming from everything from Lunar laser ranging to binary
pulsar timing to Big Bang Nucleosynthesis.

Steve Carlip

  #4  
Old March 11th 21, 07:44 AM posted to sci.physics.research,sci.astro.research
undress to reply
external usenet poster
 
Posts: 1
Default How well do we know the value of G?

In article , Steven Carlip
writes:

On 3/10/21 2:09 AM, Phillip Helbig (undress to reply) wrote:
How well do we know the value of G?

G is the constant (well, as far as we know) of nature whose value is
known with the least precision. How well do we know it? Presumably
only Cavendish-type experiments can measure it directly. Other
measurements of G, particularly astronomical ones, probably actually
measure GM, or GMm. In some cases, those quantities might be known to
more precision than G itself.

Suppose G were to vary with time, or place, or (thinking of something
like MOND here) with the acceleration in question. Could that be
detected, or would it be masked by wrong assumptions about the mass(es)
involved?


The idea that G may vary in time goes back to Dirac's "large
numbers hypothesis" in the 1930s. There's been a huge amount of
experimental and observational investigation. A classic review
article is Uzan, arXiv:hep-ph/0205340; a more recent version is
arXiv:1009.5514. There are quite strong constraints on time
variation, and some weaker constraints on spatial variation,
coming from everything from Lunar laser ranging to binary
pulsar timing to Big Bang Nucleosynthesis.


I suppose that there are relatively strong constraints on variation with
time; those were used to rule out theories like Dirac's and so on: the
temperature of the Sun would change, the structure of the Earth, and so
on, and as you note some weaker constraints on spatial variation.

More interesting is how well we know it and whether different
measurements are statistically compatible. (My guess is that they are
since the precision is not very good, compared to measurements of other
constants.)

My main point is that G is rarely measured, but rather GM, and one often
has no handle on M other than by assuming G. So perhaps it could vary
from place to place within, say, the Galaxy or the Local Group. I don't
have any reason to think that it does, but, as discussed in another
thread here recently, are there actually any useful constraints?
Obviously it doesn't vary by very much, as stellar populations in
different galaxies look broadly similar and so on.

Probably most difficult to rule out is something like MOND (which
actually has a lot of evidence in support of it, at least at the
phenomenological level) where the (effective) value of G varies. In
MOND, for small accelerations, the value is higher than the Newtonian
(or GR) value.

Suppose that in the case of very strong fields, the effective value is
less than the G we measure directly. To some extent, that could be
compensated for via larger masses (as often the product GM is relevant).
To take a concrete example, in the LIGO black-hole--merger events, could
one decrease G by, say, 1 per cent, and increase the masses accordingly,
and still fit the data?
 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump


All times are GMT +1. The time now is 07:51 AM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.
Copyright 2004-2022 SpaceBanter.com.
The comments are property of their posters.