A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily 3778



 
 
Thread Tools Display Modes
  #1  
Old January 19th 05, 03:16 PM
external usenet poster
 
Posts: n/a
Default Daily 3778

HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

DAILY REPORT # 3778

PERIOD COVERED: DOY 18

OBSERVATIONS SCHEDULED

ACS/HRC 10199

The Most Massive Galaxies in the Universe: Double Trouble?

We are proposing an HST snapshot survey of 70 objects with velocity
dispersion larger than 350 km/s, selected from the Sloan Digital Sky
Survey. Potentially this sample contains the most massive galaxies in
the Universe. Some of these objects may be superpositions; HST imaging
is the key to determining if they are single and massive or if they
are two objects in projection. The objects which HST imaging shows to
be single objects are interesting because they potentially harbor the
most massive black holes, and because their existence places strong
constraints on galaxy formation models. When combined with ground
based data already in hand, the objects which HST imaging shows are
superpositions provide valuable information about interaction rates of
early- type galaxies as well as their dust content. They also
constrain the allowed parameter space for models of binary
gravitational lenses {such models are currently invoked to explain
discrepancies in the distribution of lensed image flux ratios and
separations}.

ACS/HRC 10377

ACS Earth Flats

High signal sky flats will be obtained by observing the bright Earth
with the HRC and WFC. These observations will be used to verify the
accuracy of the flats currently used by the pipeline and will provide
a comparison with flats derived via other techniques: L- flats from
stellar observations, sky flats from stacked GO observations, and
internal flats using the calibration lamps. Weekly coronagraphic
monitoring is required to assess the changing position of the spots.

ACS/WFC 10429

Streaming Towards Shapley: The Mass of the Richest Galaxy
Concentration in the Local Universe

The 600 km/s motion of the Local Group {LG} with respect to the cosmic
microwave background {CMB} is now known to high accuracy. However, its
precise origin remains poorly understood. The contribution to the
motion from the pull of the rich Shapley supercluster at z = 0.048 is
particularly controversial. This extreme mass concentration contains
more than 20 Abell clusters within 35 Mpc of its very rich central
cluster A3558, and is recognized as both the optically richest and the
most X-ray luminous structure in the local {z 0.1} universe. Yet,
published values for the mass of Shapley continue to differ by an
order of magnitude, and recent estimates of its pull on the LG range
from negligible {20 km/s} to highly significant {300 km/s or more}.
Here we propose to resolve this key issue by using ACS to measure
high-precision surface brightness fluctuation {SBF} distances in order
to make a direct measurement of the infall towards Shapley. We will
target three Shapley foreground clusters where the infall is expected
to be high {possibly 1000 km/s or more}, as well as the Shapley core,
in order to test the assumption that it is at rest in the CMB. Prior
to ACS, the Shapley region was unreachable for SBF, but ACS doubles
the distance range of the SBF method with HST, enabling the distances
to be measured to the required accuracy. The proposed measurements
will place a firm limit on the largest mass fluctuation in the nearby
universe and finally determine its contribution to the observed CMB
dipole.

ACS/WFC 10452

HST/ACS Mosaic of M51

A six-pointing ACS WFC mosaic of the galaxy pair M51 will be obtained
in four filters, B, V, I and H-alpha. Four orbits per pointing will
allow high-quality S/N images of the entire galaxy.

ACS/WFC/NIC2 10189

PANS-Probing Acceleration Now with Supernovae

Type Ia supernovae {SNe Ia} provide the most direct evidence for an
accelerating Universe, a result widely attributed to dark energy.
Using HST in Cycle 11 we extended the Hubble diagram with 6 of the 7
highest-redshift SNe Ia known, all at z1.25, providing conclusive
evidence of an earlier epoch of cosmic deceleration. The full sample
of 16 new SNe Ia match the cosmic concordance model and are
inconsistent with a simple model of evolution or dust as alternatives
to dark energy. Understanding dark energy may be the biggest current
challenge to cosmology and particle physics. To understand the nature
of dark energy, we seek to measure its two most fundamental
properties: its evolution {i.e., dw/dz}, and its recent equation of
state {i.e., w{z=0}}. SNe Ia at z1, beyond the reach of the ground
but squarely within the reach of HST with ACS, are crucial to break
the degeneracy in the measurements of these two basic aspects of dark
energy. The SNe Ia we have discovered and measured with HST in Cycle
11, now double the precision of our knowledge of both properties. Here
we propose to quadruple the sample of SNe Ia at z1 in the next two
cycles, complementing on-going surveys from the ground at z1, and
again doubling the precision of dark energy constraints. Should the
current best fit model prove to be the correct one, the precision
expected from the current proposal will suffice to rule out a
cosmological constant at the 99% confidence level. Whatever the
result, these objects will provide the basis with which to extend our
empirical knowledge of this newly discovered and dominant component of
the Universe, and will remain one of the most significant legacies of
HST. In addition, our survey and follow-up data will greatly enhance
the value of the archival data within the target Treasury fields for
galaxy studies.

ACS/WFC/WFPC2 10265

The Formation History of Andromeda

We propose deep observations of Andromeda's outer disk and giant tidal
stream, to reconstruct their star formation histories. As the nearest
giant galaxy, Andromeda offers the best testing ground for
understanding galaxy formation and evolution. Given the dramatic
increase in sensitivity offered by the ACS, we can now resolve stars
on the old main sequence in the other giant spiral of the Local Group,
and employ the same direct age diagnostics that have been used for
decades in the study of Galactic globular clusters. In Cycle 11, we
successfully observed a field in the Andromeda halo and constructed a
deep color-magnitude diagram reaching well below the oldest main
sequence turnoff. In Cycle 13, we propose to extend these observations
to the outer disk and tidal stream of Andromeda, to constrain their
star formation histories and compare them to that of the halo. The
combined observations from these two programs will offer a dramatic
advance in our understanding of the overall evolution of spiral
galaxies.

NIC/NIC3 10226

The NICMOS Grism Parallel Survey

We propose to continue managing the NICMOS pure parallel program.
Based on our experience, we are well prepared to make optimal use of
the parallel opportunities. The improved sensitivity and efficiency of
our observations will substantially increase the number of
line-emitting galaxies detected. As our previous work has
demonstrated, the most frequently detected line is Halpha at
0.7z1.9, which provides an excellent measure of current star
formation rate. We will also detect star-forming and active galaxies
in other redshift ranges using other emission lines. The grism
observations will produce by far the best available Halpha luminosity
functions over the crucial--but poorly observed--redshift range where
galaxies appear to have assembled most of their stellar mass. This key
process of galaxy evolution needs to be studied with IR data; we found
that observations at shorter wavelengths appear to have missed a large
fraction of the star-formation in galaxies, due to dust reddening. We
will also obtain deep F110W and F160W images, to examine the space
densities and morphologies of faint red galaxies. In addition to
carrying out the public parallels, we will make the fully reduced and
calibrated images and spectra available on-line, with some
ground-based data for the deepest parallel fields included.

NIC2 10173

Infrared Snapshots of 3CR Radio Galaxies

Radio galaxies are an important class of extragalactic objects: they
are one of the most energetic astrophysical phenomena and they provide
an exceptional probe of the evolving Universe, lying typically in high
density regions but well-represented across a wide redshift range. In
earlier Cycles we carried out extensive HST observations of the 3CR
sources in order to acquire a complete and quantitative inventory of
the structure, contents and evolution of these important objects.
Amongst the results, we discovered new optical jets, dust lanes,
face-on disks with optical jets, and revealed point-like nuclei whose
properties support FR-I/BL Lac unified schemes. Here, we propose to
obtain NICMOS infrared images of 3CR sources with z0.3 as a major
enhancement to an already superb dataset. We aim to deshroud dusty
galaxies, study the underlying host galaxy free from the distorting
effects of dust, locate hidden regions of star formation and establish
the physical characteristics of the dust itself. We will measure
frequency and spectral energy distributions of point-like nuclei,
expected to be stronger and more prevalent in the IR, seek spectral
turnovers in known synchrotron jets and find new jets. We will
strongly test unified AGN schemes and merge these data with existing
X-ray to radio observations. The resulting database will be an
incredibly valuable resource to the astronomical community for years
to come.

NICMOS 8790

NICMOS Post-SAA calibration - CR Persistence Part 1.

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be
non-standard reference files available to users with a USEAFTER
date/time mark.

WFPC2 10360

WFPC2 CYCLE 13 INTERNAL MONITOR

This calibration proposal is the Cycle 13 routine internal monitor for
WFPC2, to be run weekly to monitor the health of the cameras. A
variety of internal exposures are obtained in order to provide a
monitor of the integrity of the CCD camera electronics in both bays
{gain 7 and gain 15}, a test for quantum efficiency in the CCDs, and a
monitor for possible buildup of contaminants on the CCD windows.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.) None

Completed Ops Request: 17362-0 RF transfer switch scrub 18/16:24z

Ops Notes Executed: 1293-0 EPS limits change during high sun time 19/00:31z

SCHEDULED SUCCESSFUL FAILURE TIMES
FGS GSacq 06 06
FGS REacq 09 09
FHST Update 12 12
LOSS of LOCK


SIGNIFICANT EVENTS: None



 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
NEW UFO Website: Daily UFO News Paleo-Conservative SETI 2 November 28th 04 04:13 PM
EVOLUTION DEAD AT AGE 126 -- R.I.P. Ed Conrad Astronomy Misc 4 August 21st 04 12:01 AM
Monitoring NASA Daily ISS Report JimO Space Station 2 June 1st 04 10:33 PM
JimO Speaks on 'Daily Planet' re Hubble JimO Policy 0 February 11th 04 10:53 PM
Spirit's daily activities schedule? Matti Anttila Policy 0 January 15th 04 08:39 AM


All times are GMT +1. The time now is 04:27 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.