A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily 3684



 
 
Thread Tools Display Modes
  #1  
Old August 30th 04, 03:37 PM
external usenet poster
 
Posts: n/a
Default Daily 3684

HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

DAILY REPORT # 3684

PERIOD COVERED: DOYs 240-242

OBSERVATIONS SCHEDULED

NIC2 9875

The Fundamental Plane of Massive Gas-Rich Mergers

We propose deep NICMOS H-band imaging of a carefully selected sample
of 33 luminous, late-stage galactic mergers. This program is part of a
comprehensive investigation of the most luminous mergers in the nearby
universe, the ultraluminous infrared galaxies {ULIGs}. The
high-resolution HST images will complement an extensive set of
ground-based data that include long-slit NIR spectra from a recently
approved Large VLT Programme. This unique dataset will allow us to
derive with unprecedented precision structural -and- kinematic
parameters for a large unbiased sample of objects spanning the entire
ULIG luminosity function. These data will refine the fundamental plane
of massive gas-rich mergers and enable us to answer the following
questions: {1} Do ultraluminous mergers form elliptical galaxies, and
in particular, giant ellipticals? {2} Do ULIGs evolve into optically
bright QSOs? The results from this detailed study of massive mergers
in the local universe will be relevant to understanding galaxy
formation and evolution at earlier epochs, and in particular, the
dusty sub-mm population that accounts for more than half of the star
formation at z 1.

ACS/HRC/WFC 9728

Tracing the History of Cosmic Expansion to z~2 with Type Ia Supernovae

Type Ia supernovae {SNe Ia} provide the only direct evidence for an
accelerating universe, an extraordinary result that needs the most
rigorous test. The case for cosmic acceleration rests on the
observation that SNe Ia at z = 0.5 are about 0.25 mag fainter than
they would be in a universe without acceleration. A powerful and
straightforward way to assess the reliability of the SN Ia measurement
and the conceptual framework of its interpretation is to look for
cosmic deceleration at z 1. This would be a clear signature of a
mixed dark-matter and dark-energy universe. Systematic errors in the
SNe Ia result attributed to grey dust or cosmic evolution of the SN Ia
peak luminosity would not show this change of sign. We have obtained a
toehold on this putative ``epoch of deceleration'' with SN 1997ff at z
= 1.7, and 3 more at z 1 from our Cycle 11 program, all found and
followed by HST. However, this is too important a test to rest on just
a few objects, anyone of which could be subject to a lensed
line-of-sight or misidentification. Here we propose to extend our
measurement with observations of twelve SNe Ia in the range 1.0 z
1.5 or 6 such SNe Ia and 1 ultradistant SN Ia at z = 2, that will be
discovered as a byproduct from proposed Treasury and DD programs.
These objects will provide a much firmer foundation for a conclusion
that touches on important questions of fundamental physics.

ACS/WFC 9717

Low Redshift Cluster Gravitational Lensing Survey

This proposal has two main scientific goals: to determine the dark
matter distribution of massive galaxy clusters, and to observe the
high redshift universe using these clusters as powerful cosmic
telescopes. Deep, g, r, i, z imaging of a sample of low-z {0.2-0.4}
clusters will yield a large sample of lensed background galaxies with
reliable photometric redshifts. By combining strong and weak lensing
constraints with the photometric redshift information it will be
possible to precisely measure the cluster dark matter distribution
with an unprecedented combination of high spatial resolution and area
coverage, avoiding many of the uncertainties which plague ground-based
studies and yielding definitive answers about the structure of massive
dark matter haloes. In addition, the cosmological parameters can be
constrained in a largely model independent way using the multiply
lensed objects due to the dependence of the Einsteining radius on the
distance to the source. We can also expect to detect several highly
magnified dropout galaxies behind the clusters in the redshift ranges
4-5 5-6 and 7-8, corresponding to a drop in the flux in the g, r, and
i bands relative to longer wavelength. We will obtain the best
information to date on the giant arcs already known in these clusters,
making possible detailed, pixel-by-pixel studies of their star
formation rate, dust distribution and structural components, including
spiral arms, out to a redshift of around z~2.5 in several passbands.

NIC1/NIC2/NIC3 8793

NICMOS Post-SAA calibration - CR Persistence Part 4

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be
non-standard reference files available to users with a USEAFTER
date/time mark. The keyword 'USEAFTER=date/time' will also be added to
the header of each POST-SAA DARK frame. The keyword must be populated
with the time, in addition to the date, because HST crosses the SAA ~8
times per day so each POST-SAA DARK will need to have the appropriate
time specified, for users to identify the ones they need. Both the raw
and processed images will be archived as POST-SAA DARKSs. Generally we
expect that all NICMOS science/calibration observations started within
50 minutes of leaving an SAA will need such maps to remove the CR
persistence from the science images. Each observation will need its
own CRMAP, as different SAA passages leave different imprints on the
NICMOS detectors.

ACS/HRC 10255

A Never Before Explored Phase Space: Resolving Close White Dwarf / Red
Dwarf Binaries

We propose an ACS Snapshot imaging survey to resolve a well-defined
sample of highly probable white dwarf plus red dwarf close binaries.
These candidates were selected from a search for white dwarfs with
infrared excess from the 2MASS database. They represent unresolved
systems {separations less than approximately 2" in the 2MASS images}
and are distributed over the whole sky. Our HST+ACS observations will
be sensitive to a separation range {1-20 AU} never before probed by
any means. The proposed study will be the first empirical test of
binary star parameters in the post-AGB phase, and cannot be
accomplished from the ground. By resolving as few as 20 of our ~100
targets with HST, we will be able to characterize the distribution of
orbital semi-major axes and secondary star masses.

NIC/NIC3 10226

The NICMOS Grism Parallel Survey

We propose to continue managing the NICMOS pure parallel program.
Based on our experience, we are well prepared to make optimal use of
the parallel opportunities. The improved sensitivity and efficiency of
our observations will substantially increase the number of
line-emitting galaxies detected. As our previous work has
demonstrated, the most frequently detected line is Halpha at
0.7z1.9, which provides an excellent measure of current star
formation rate. We will also detect star-forming and active galaxies
in other redshift ranges using other emission lines. The grism
observations will produce by far the best available Halpha luminosity
functions over the crucial--but poorly observed--redshift range where
galaxies appear to have assembled most of their stellar mass. This key
process of galaxy evolution needs to be studied with IR data; we found
that observations at shorter wavelengths appear to have missed a large
fraction of the star-formation in galaxies, due to dust reddening. We
will also obtain deep F110W and F160W images, to examine the space
densities and morphologies of faint red galaxies. In addition to
carrying out the public parallels, we will make the fully reduced and
calibrated images and spectra available on-line, with some
ground-based data for the deepest parallel fields included.

ACS/WFC 10216

Co-evolution of spheroids and black holes

The masses of the giant black holes in galaxies are correlated with
the luminosities, masses, and velocity dispersions of their host
spheroids. This empirical connection of phenomena on widely different
scales {from sub-parsec to kiloparsec} suggests that the evolution of
a galaxy and its central black hole are closely linked. We propose to
test various unified formation models, by measuring the cosmic
evolution of the black hole/spheroid relations, back to z=0.37 {a
lookback time of 4 Gyrs}. We will obtain 1-orbit ACS images of a
sample of 20 Seyfert 1 galaxies, for which we already have extensive
new ground-based measures of the black hole masses and the stellar
velocity dispersions. HST resolution is required for accurate
measurement of the nonstellar AGN continuum, and the luminosity and
effective radius of the bulge of each host galaxy. This will complete
the set of observables needed to map the co-evolution of spheroids and
black-holes. The proposed sample is the minimum required to make the
first measure of the black hole mass/bulge correlation and of the
fundamental plane for active galaxies outside the local Universe.

ACS/HRC 10182

Towards a Comprehensive Understanding of Type Ia Supernovae: The
Necessity of UV Observations

Type Ia supernovae {SNe Ia} are very important to many diverse areas
of astrophysics, from the chemical evolution of galaxies to
observational cosmology which led to the discovery of dark energy and
the accelerating Universe. However, the utility of SNe Ia as
cosmological probes depends on the degree of our understanding of SN
Ia physics, and various systematic effects such as cosmic chemical
evolution. At present, the progenitors of SNe Ia and the exact
explosion mechanisms are still poorly understood, as are evolutionary
effects on SN Ia peak luminosities. Since early-time UV spectra and
light curves of nearby SNe Ia can directly address these questions, we
propose an approach consisting of two observational components: {1}
Detailed studies of two very bright, young, nearby SNe Ia with HST UV
spectroscopy at 13 epochs within the first 1.5 months after discovery;
and {2} studies of correlations with luminosity for five somewhat more
distant Hubble-flow SNe Ia, for which relative luminosities can be
determined with precision, using 8 epochs of HST UV spectroscopy
and/or broad-band imaging. The HST data, along with extensive
ground-based optical to near-IR observations, will be analyzed with
state-of-the-art models to probe SN Ia explosion physics and constrain
the nature of the progenitors. The results will form the basis for the
next phase of precision cosmology measurements using SNe Ia, allowing
us to more fully capitalize on the substantial past {and future}
investments of time made with HST in observations of high-redshift SNe
Ia.

NIC2 10177

Solar Systems In Formation: A NICMOS Coronagraphic Survey of
Protoplanetary and Debris Disks

Until recently, despite decades of concerted effort applied to
understanding the formation processes that gave birth to our solar
system, the detailed morphology of circumstellar material that must
eventually form planets has been virtually impossible to discern. The
advent of high contrast, coronagraphic imaging as implemented with the
instruments aboard HST has dramatically enhanced our understanding of
natal planetary system formation. Even so, only a handful of evolved
disks {~ 1 Myr and older} have been imaged and spatially resolved in
light scattered from their constituent grains. To elucidate the
physical processes and properties in potentially planet-forming
circumstellar disks, and to understand the nature and evolution of
their grains, a larger spatially resolved and photometrically reliable
sample of such systems must be observed. Thus, we propose a highly
sensitive circumstellar disk imaging survey of a well-defined and
carefully selected sample of YSOs {1-10 Myr T Tau and HAeBe stars} and
{ app 10 Myr} main sequence stars, to probe the posited epoch of
planetary system formation, and to provide this critically needed
imagery. Our resolved images will shed light on the spatial
distributions of the dust in these thermally emissive disks. In
combination with their long wavelength SEDs the physical properties of
the grains will be discerned, or constrained by our photometrically
accurate surface brightness sensitivity limits for faint disks which
elude detection. Our sample builds on the success of the exploratory
GTO 7233 program, using two-roll per orbit PSF-subtracted NICMOS
coronagraphy to provide the highest detection sensitivity to the
smallest disks around bright stars which can be imaged with HST. Our
sample will discriminate between proposed evolutionary scenarios while
providing a legacy of cataloged morphologies for interpreting mid- and
far-IR SEDs that the recently launched Spitzer Space Telescope will
deliver.

NIC2 10176

Coronagraphic Survey for Giant Planets Around Nearby Young Stars

A systematic imaging search for extra-solar Jovian planets is now
possible thanks to recent progress in identifying "young stars near
Earth". For most of the proposed young {~ 30 Myrs} and nearby {~ 60
pc} targets, we can detect a few Jupiter-mass planets as close as a
few tens of AUs from the primary stars. This represents the first time
that potential analogs of our solar system - that is planetary systems
with giant planets having semi-major axes comparable to those of the
four giant planets of the Solar System - come within the grasp of
existing instrumentation. Our proposed targets have not been observed
for planets with the Hubble Space Telescope previously. Considering
the very successful earlier NICMOS observations of low mass brown
dwarfs and planetary disks among members of the TW Hydrae Association,
a fair fraction of our targets should also turn out to posses low mass
brown dwarfs, giant planets, or dusty planetary disks because our
targets are similar to {or even better than} the TW Hydrae stars in
terms of youth and proximity to Earth. Should HST time be awarded and
planetary mass candidates be found, proper motion follow-up of
candidate planets will be done with ground-based AOs.

ACS/WFC 10158

ACS Observations of the Gravitational Lens B1608+656: Characterizing
the Einstein Ring

We request time to obtain ACS deep images of the B1608+656
gravitational lens system to fully characterize its enclosing Einstein
ring with high signal-to-noise ratio {SNR}. These data will allow us
to determine the gravitational potential of the lens, locally, to
several percent accuracy and, combined with the three independent time
delays, measure H_0 to much better than 10% precision. For this goal,
we have developed powerful new lens modeling codes that make use of
the full brightness distribution of the Einstein ring in lens systems.
The B1608+656 system is ideal for our new code. It has precisely
measured time delays, a well-determined stellar velocity dispersion,
and an Einstein ring that is not dominated by the lensed nuclear
emission of the background source. When combined with high-SNR images
of Einstein rings, the new modeling codes provide qualitatively
different and much improved analysis of the ring emission than was
previously possible. The proposed ACS observations will reach the SNR
at which the new modeling code can be fully exploited {SNR=5 per
pixel}. Our simulations show that these new data will allow us to
reduce the total uncertainties in H_0 derived from the system by at
least a factor of two, to the 5-7% level for this system.

WFPC2 10080

Wavelength Stability of Narrow Band and Linear Ramp Filters

Verify the mapping of wavelength as a function of CCD position on
LRFs; check for changes in central wavelengths of narrow band filters.

WFPC2 10071

WFPC2 CYCLE 12 Supplemental Darks Part 3/3

This dark calibration program obtains 3 dark frames every day to
provide data for monitoring and characterizing the evolution of hot
pixels.

ACS/HRC/WFC 10061

CCD Daily Monitor

This program consists of basic tests to monitor, the read noise, the
development of hot pixels and test for any source of noise in ACS CCD
detectors. This programme will be executed once a day for the entire
lifetime of ACS.

ACS/WFC 10043

External CTE Monitor

Monitor CTE changes during cycle 11. Determine CTE.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.)

HSTAR 9525: GS Acquisition (1,2,2) @ 240/20:05:43Z resulted in FL
backup (2,0,2) due to SSLE on FGS 1. GS Reacquisition @ 240/20:35:50Z
will also result in FL backup (2,0,2). Under investigation.

COMPLETED OPS REQs: None

OPS NOTES EXECUTED:
1265-0 State-of-Charge Ground System Limit Update @ 240//1603z
0900-1 Command Problem @ 241/0912z
0900-1 Command Problem @ 243/0827z
0916-0 Tabulation of Slew Attitude Error (Miss-distance) @ 243/0131z

SCHEDULED SUCCESSFUL FAILURE TIMES
FGS GSacq 33 33
FGS REacq 20 20
FHST Update 44 44
LOSS of LOCK

SIGNIFICANT EVENTS:

To further reduce the variance in Full Rate-of-Charge, implemented
minimum SA 3 offset of 14.25 degrees in SPSS for SMS SA243O00.


 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
EVOLUTION DEAD AT AGE 126 -- R.I.P. Ed Conrad Astronomy Misc 4 August 21st 04 12:01 AM
Monitoring NASA Daily ISS Report JimO Space Station 2 June 1st 04 10:33 PM


All times are GMT +1. The time now is 11:11 AM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.