A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Astronomy Misc
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

IS ALL MOTION RELATIVE?



 
 
Thread Tools Display Modes
  #1  
Old March 23rd 13, 09:21 AM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default IS ALL MOTION RELATIVE?

http://education-portal.com/academy/...t-example.html
"IS ALL MOTION RELATIVE? (...) IT APPEARS THE ANSWER IS NO. (...) SPEED OF LIGHT IS NOT RELATIVE. The speed of light is c, and it's c regardless of the source of the light or the perspective of the observer. Let's look at an example. Imagine you're traveling away from the sun at a velocity that is really close to the speed of light - let's say 250,000 km/sec (that's pretty fast). Let's have fun with this and say you can see a photon of light moving away from the sun and passing you up through some window on your spaceship. Now get out your trusty radar gun and measure the speed of light as it passes by the window. What would the speed of light measure relative to your ship? Based on classical relativity, you might predict the velocity of the light relative to your ship to measure 50,000 km/sec, as your ship is already traveling 250,000 km/sec and 300,000 km/sec - 250,000 km/sec = 50,000 km/sec. However, you would measure the speed of light to be 300,000 km/sec. Don't buy a new radar gun just yet. As it turns out, your radar gun is correct. The speed of light is the same relative to your fast-moving ship or even an external stationary point."

IT APPEARS THE ANSWER IS YES:

http://www.datasync.com/~rsf1/crit/1908l.htm
Walther Ritz (1908): "The only conclusion which, from then on, seems possible to me, is that (...) THE MOTION OF LIGHT IS A RELATIVE MOTION LIKE ALL THE OTHERS, that only relative velocities play a role in the laws of nature...."

http://www.worldnpa.org/pdf/abstracts/abstracts_215.pdf
Herbert Dingle: "Either there is an absolute standard of rest - call it the ether as with Maxwell, or the universe as with Mach, or absolute space as with Newton, or what you will or else ALL MOTION, INCLUDING THAT WITH THE SPEED OF LIGHT, IS RELATIVE, AS WITH RITZ."

http://www.sps.ch/fr/artikel/geschic...physicist_ 2/
Jan Lacki: "Ritz had no time to make his theory more elaborate. He died complaining that no one, even in Göttingen, was granting his views sufficient care. His emissionist views were submitted to heavy criticism and experimental tests were later realized to show their inanity. Today, with considerable hindsight, we know the end of the story and how Einstein and Planck's views shaped our contemporary physics. While few would today contest the reality of quanta or turn their back on field theory of elementary processes, it is interesting to know that the criticisms against Ritz's conceptions were shown, since then, often wanting, if not simply incorrect. It is fair to say that if Ritz's emission theory is false, it cannot be as easily dismissed as it was thought in Ritz's times."

https://webspace.utexas.edu/aam829/1/m/Relativity.html
Alberto Martinez: "Does the speed of light depend on the speed of its source? Before formulating his theory of special relativity, Albert Einstein spent a few years trying to formulate a theory in which the speed of light depends on its source, just like all material projectiles. Likewise, Walter Ritz outlined such a theory, where none of the peculiar effects of Einstein's relativity would hold. By 1913 most physicists abandoned such efforts, accepting the postulate of the constancy of the speed of light. Yet five decades later all the evidence that had been said to prove that the speed of light is independent of its source had been found to be defective."

http://a-levelphysicstutor.com/wav-doppler.php
"vO is the velocity of an observer moving towards the source. This velocity is independent of the motion of the source. Hence, the velocity of waves relative to the observer is c + vO. (...) The motion of an observer does not alter the wavelength. The increase in frequency is a result of the observer encountering more wavelengths in a given time."

http://www.donbosco-tournai.be/expo-...fetDoppler.pdf
"La variation de la fréquence observée lorsqu'il y a mouvement relatif entre la source et l'observateur est appelée effet Doppler. (...) 6. Source immobile - Observateur en mouvement: La distance entre les crêtes, la longueur d'onde lambda ne change pas. Mais la vitesse des crêtes par rapport à l'observateur change !"

http://physics.bu.edu/~redner/211-sp...9_doppler.html
Sidney Redner: "The Doppler effect is the shift in frequency of a wave that occurs when the wave source, or the detector of the wave, is moving. Applications of the Doppler effect range from medical tests using ultrasound to radar detectors and astronomy (with electromagnetic waves). (...) We will focus on sound waves in describing the Doppler effect, but it works for other waves too. (...) Let's say you, the observer, now move toward the source with velocity vO. You encounter more waves per unit time than you did before. Relative to you, the waves travel at a higher speed: v'=v+vO. The frequency of the waves you detect is higher, and is given by: f'=v'/(lambda)=(v+vO)/(lambda)."

http://www.usna.edu/Users/physics/mu...plerEffect.pdf
Carl Mungan: "Consider the case where the observer moves toward the source. In this case, the observer is rushing head-long into the wavefronts, so that we expect v'v. In fact, the wave speed is simply increased by the observer speed, as we can see by jumping into the observer's frame of reference. Thus, v'=v+v_o=v(1+v_o/v). Finally, the frequency must increase by exactly the same factor as the wave speed increased, in order to ensure that L'=L - v'/f'=v/f. Putting everything together, we thus have: OBSERVER MOVING TOWARD SOURCE: L'=L; f'=f(1+v_o/v); v'=v+v_o."

Pentcho Valev
  #2  
Old March 23rd 13, 03:29 PM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default IS ALL MOTION RELATIVE?

The following argument is valid (that is, the conclusion does follow from the hypotheses, no matter whether they are true or false):

Hypothesis 1: As the observer starts moving towards the source of the light waves with speed v, the speed of the waves relative to him shifts from c to c'=c+v. (In fact, this variation of the speed of the waves with the speed of the observer is true for all waves but here, for the sake of argument, it is advanced as a hypothesis concerning light waves only.)

Hypothesis 2: The motion of the observer cannot change the wavelength of the incoming light.

Conclusion: As the observer starts moving towards the source of the light waves with speed v, the frequency he measures shifts from f to f'=f(1+v/c)..

The experimental evidence confirming the conclusion is so overwhelming as to be conclusive to all and not worth mentioning:

http://rockpile.phys.virginia.edu/mod04/mod34.pdf
Paul Fendley: "Now let's see what this does to the frequency of the light. We know that even without special relativity, observers moving at different velocities measure different frequencies. (This is the reason the pitch of an ambulance changes as it passes you it doesn't change if you're on the ambulance). This is called the Doppler shift, and for small relative velocity v it is easy to show that the frequency shifts from f to f(1+v/c) (it goes up heading toward you, down away from you). There are relativistic corrections, but these are negligible here."

So we have two hypotheses which sound reasonable insofar as they are based on the analogy (often used in textbooks) between light waves and other waves. We also have a conclusion which is overwhelmingly confirmed. This is deductive science par excellence but it contradicts special relativity.

Einsteinians can try to save special relativity by proposing different hypotheses which sound reasonable again and entail (quantitatively!) the same conclusion:

Hypothesis 1: ... ?

Hypothesis 2: ... ?

Conclusion: As the observer starts moving towards the source of the light waves with speed v, the frequency he measures shifts from f to f'=f(1+v/c)..

See here why Einsteinians are reluctant to offer different hypotheses:

http://fqxi.org/data/essay-contest-f...equency_Im.pdf
Shift in Frequency Implies Shift in Speed of Light

Pentcho Valev
  #3  
Old March 25th 13, 01:02 AM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default IS ALL MOTION RELATIVE?

http://www.pitt.edu/~jdnorton/papers/companion.pdf
John Norton: "Einstein could not see how to formulate a fully relativistic electrodynamics merely using his new device of field transformations. So he considered the possibility of modifying Maxwells electrodynamics in order to bring it into accord with an emission theory of light, such as Newton had originally conceived. There was some inevitability in these attempts, as long as he held to classical (Galilean) kinematics. Imagine that some emitter sends out a light beam at c. According to this kinematics, an observer who moves past at v in the opposite direction, will see the emitter moving at v and the light emitted at c+v."

Is this prediction of Newton's emission theory of light confirmed experimentally? Yes it is. If the speed of light is c'=c+v, then the frequency the observer sees (measures) is f'=(c+v)/L=f(1+v/c), where L is the wavelength and f is the frequency seen by an observer at rest relative to the emitter.

That is, the assumption c'=c+v entails the formula f'=f(1+v/c); the latter has been confirmed countless times:

http://rockpile.phys.virginia.edu/mod04/mod34.pdf
Paul Fendley: "Now let's see what this does to the frequency of the light. We know that even without special relativity, observers moving at different velocities measure different frequencies. (This is the reason the pitch of an ambulance changes as it passes you it doesn't change if you're on the ambulance). This is called the Doppler shift, and for small relative velocity v it is easy to show that the frequency shifts from f to f(1+v/c) (it goes up heading toward you, down away from you). There are relativistic corrections, but these are negligible here."

Pentcho Valev
  #4  
Old March 25th 13, 11:05 PM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default IS ALL MOTION RELATIVE?

Walther Ritz rejects the field concept because it introduces absolute motion:

http://www.datasync.com/~rsf1/crit/1908a.htm
Walther Ritz 1908: "The only conclusion which, from then on, seems possible to me, is that ether doesn't exist, or more exactly, that we should renounce use of this representation, that the motion of light is a relative motion like all the others, that only relative velocities play a role in the laws of nature; and finally that we should renounce use of partial differential equations and the notion of field, in the measure that this notion introduces absolute motion."

In 1952 Einstein still advocates the field concept of light:

http://www.relativitybook.com/resour...ein_space.html
Relativity and the Problem of Space, Albert Einstein (1952): "During the second half of the nineteenth century, in connection with the researches of Faraday and Maxwell it became more and more clear that the description of electromagnetic processes in terms of field was vastly superior to a treatment on the basis of the mechanical concepts of material points. By the introduction of the field concept in electrodynamics, Maxwell succeeded in predicting the existence of electromagnetic waves, the essential identity of which with light waves could not be doubted because of the equality of their velocity of propagation. As a result of this, optics was, in principle, absorbed by electrodynamics. One psychological effect of this immense success was that the field concept, as opposed to the mechanistic framework of classical physics, gradually won greater independence. (...) Since the special theory of relativity revealed the physical equivalence of all inertial systems, it proved the untenability of the hypothesis of an aether at rest. It was therefore necessary to renounce the idea that the electromagnetic field is to be regarded as a state of a material carrier. The field thus becomes an irreducible element of physical description..."

In 1954 Einstein suddenly becomes honest and informs the world that the field concept might have killed physics:

http://www.perimeterinstitute.ca/pdf...09145525ca.pdf
Albert Einstein (1954): "I consider it entirely possible that physics cannot be based upon the field concept, that is on continuous structures. Then nothing will remain of my whole castle in the air, including the theory of gravitation, but also nothing of the rest of contemporary physics."

How did the field concept of light kill physics? By infecting it with Einstein's 1905 false light postulate:

http://arxiv.org/ftp/physics/papers/0101/0101109.pdf
"The two first articles (January and March) establish clearly a discontinuous structure of matter and light. The standard look of Einstein's SR is, on the contrary, essentially based on the continuous conception of the field."

http://www.pbs.org/wgbh/nova/einstein/genius/
"And then, in June, Einstein completes special relativity, which adds a twist to the story: Einstein's March paper treated light as particles, but special relativity sees light as a continuous field of waves."

http://www.amazon.com/Relativity-Its.../dp/0486406768
Relativity and Its Roots, Banesh Hoffmann: "Moreover, if light consists of particles, as Einstein had suggested in his paper submitted just thirteen weeks before this one, the second principle seems absurd: A stone thrown from a speeding train can do far more damage than one thrown from a train at rest; the speed of the particle is not independent of the motion of the object emitting it. And if we take light to consist of particles and assume that these particles obey Newton's laws, they will conform to Newtonian relativity and thus automatically account for the null result of the Michelson-Morley experiment without recourse to contracting lengths, local time, or Lorentz transformations. Yet, as we have seen, Einstein resisted the temptation to account for the null result in terms of particles of light and simple, familiar Newtonian ideas, and introduced as his second postulate something that was more or less obvious when thought of in terms of waves in an ether."

Pentcho Valev
  #5  
Old March 28th 13, 08:27 PM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default IS ALL MOTION RELATIVE?

The frequency varies with the speed of the observer but in Divine Albert's schizophrenic world the wavelength also varies so that the speed of the waves relative to the observer can gloriously remain constant, Divine Einstein, yes we all believe in relativity, relativity, relativity:

http://highered.mcgraw-hill.com/olcw...oppler_Nav.swf
"INTRODUCTION: Our ears detect changes in the frequency of sound waves due to the Doppler shift, but the waves change in another way, too: in their wavelength. Wavelength and frequency are closely related: if one increases, the other decreases. Their product, the speed of the wave, remains the same. The spaceship in this interactive has an instrument which detects electromagnetic radiation. You can see the wavelength and frequency change as the ship and the source of radiation move through space. EXERCISES: 2. Now click on the "Observer Approaches" button. The ship will start flying towards the source. What is the wavelength of the waves now, as the ship approaches the source? Does the frequency increase or decrease? SOLUTIONS: 2. The wavelength shrinks so that about three waves now fit within the graph. (...) The frequency increases."

http://www.pitt.edu/~jdnorton/teachi...ved/index.html
John Norton: "Here's a light wave and an observer. If the observer were to hurry towards the source of the light, the observer would now pass wavecrests more frequently than the resting observer. That would mean that moving observer would find the frequency of the light to have increased (AND CORRESPONDINGLY FOR THE WAVELENGTH - THE DISTANCE BETWEEN CRESTS - TO HAVE DECREASED)."

http://www.imcce.fr/en/grandpublic/s...ages3/327.html
"Décalage d'un spectre : l'effet Doppler. Cet effet se manifeste lorsque l'onde émise et l'observateur sont en mouvement l'un par rapport à l'autre et dans la direction de propagation de l'onde. L'observateur à l'arrêt voit passer 2 maxima consécutifs à chaque intervalle de temps t. S'il s'approche de la source de rayonnement, ce temps sera plus court. L'onde se manifestera avec une fréquence plus élevée, DONC UNE LONGUEUR D'ONDE PLUS COURTE."

http://lewebpedagogique.com/physique...8doppler_p.gif

Of course, the motion of the observer cannot change the wavelength (in a world different from Divine Albert's schizophrenic world) - it remains constant and therefore both the frequency and the speed of the waves vary with the speed of the observer, in violation of special relativity:

http://www.youtube.com/watch?feature...&v=EVzUyE2oD1w

http://www.einstein-online.info/spotlights/doppler
Albert Einstein Institute: "The frequency of a wave-like signal - such as sound or light - depends on the movement of the sender and of the receiver. This is known as the Doppler effect. (...) Here is an animation of the receiver moving towards the source: (...) By observing the two indicator lights, you can see for yourself that, once more, there is a blue-shift - the pulse frequency measured at the receiver is somewhat higher than the frequency with which the pulses are sent out. This time, the distances between subsequent pulses are not affected, but still there is a frequency shift: As the receiver moves towards each pulse, the time until pulse and receiver meet up is shortened. In this particular animation, which has the receiver moving towards the source at one third the speed of the pulses themselves, four pulses are received in the time it takes the source to emit three pulses."

That is, the motion of the observer cannot change the wavelength ("the distances between subsequent pulses are not affected") and accordingly the speed of light as measured by the receiver is (4/3)c.

Pentcho Valev
  #6  
Old March 29th 13, 07:09 AM posted to sci.astro
Syamu Mamilla M12
external usenet poster
 
Posts: 1
Default IS ALL MOTION RELATIVE?

sdf

  #7  
Old March 30th 13, 03:16 PM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default IS ALL MOTION RELATIVE?

http://www.phys.uconn.edu/~gibson/No...6_3/Sec6_3.htm
Professor George N. Gibson, University of Connecticut: "However, if either the source or the observer is moving, things change. This is called the Doppler effect. (...) To understand the moving observer, imagine you are in a motorboat on the ocean. If you are not moving, the boat will bob up and down with a certain frequency determined by the ocean waves coming in. However, imagine that you are moving into the waves fairly quickly. You will find that you bob up and down more rapidly, because you hit the crests of the waves sooner than if you were not moving. So, the frequency of the waves appears to be higher to you than if you were not moving. Notice, THE WAVES THEMSELVES HAVE NOT CHANGED, only your experience of them. Nevertheless, you would say that the frequency has increased. Now imagine that you are returning to shore, and so you are traveling in the same direction as the waves. In this case, the waves may still overtake you, but AT A MUCH SLOWER RATE - you will bob up and down more slowly. In fact, if you travel with exactly the same speed as the waves, you will not bob up and down at all. The same thing is true for sound waves, or ANY OTHER WAVES. (...) The formula for the frequency that the observer will detect depends on the speed of the observer; the larger the speed the greater the effect. If we call the speed of the observer, Vo, the frequency the observer detects will be: f'=f(1+Vo/Vwave). Here, f is the original frequency and Vwave is the speed of the wave."

Clearly the speed of ANY WAVES relative to the observer varies with the speed of the observer ("the waves may still overtake you, but AT A MUCH SLOWER RATE"). If the observer moves towards the wave source with speed Vo, the speed of the waves relative to him is:

V' = Lf' = Vwave + Vo

where L is the wavelength. In the case of light waves V' becomes c' and Vwave becomes c:

c' = c + Vo

That is, by measuring the Doppler frequency shift one in fact measures the shift in the speed of light. It is extremely difficult to understand why special relativity, an obviously wrong theory, has been worshipped for more than a century.

Pentcho Valev
  #8  
Old March 31st 13, 07:58 AM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default IS ALL MOTION RELATIVE?

http://www.aip.org/history/einstein/...relativity.htm
John Stachel: "But here he ran into the most blatant-seeming contradiction, which I mentioned earlier when first discussing the two principles. As noted then, the Maxwell-Lorentz equations imply that there exists (at least) one inertial frame in which the speed of light is a constant regardless of the motion of the light source. Einstein's version of the relativity principle (minus the ether) requires that, if this is true for one inertial frame, it must be true for all inertial frames. But this seems to be nonsense. How can it happen that the speed of light relative to an observer cannot be increased or decreased if that observer moves towards or away from a light beam? Einstein states that he wrestled with this problem over a lengthy period of time, to the point of despair. We have no details of this struggle, unfortunately. Finally, after a day spent wrestling once more with the problem in the company of his friend and patent office colleague Michele Besso, the only person thanked in the 1905 SRT paper, there came a moment of crucial insight. In all of his struggles with the emission theory as well as with Lorentz's theory, he had been assuming that the ordinary Newtonian law of addition of velocities was unproblematic. It is this law of addition of velocities that allows one to "prove" that, if the velocity of light is constant with respect to one inertial frame, it cannot be constant with respect to any other inertial frame moving with respect to the first. It suddenly dawned on Einstein that this "obvious" law was based on certain assumptions about the nature of time..."

Einstein reconstructed space and time - the centaur he created, spacetime, was able to neutralize any variation of the speed of light relative to the moving observer. However Einstein forgot to procrusteanize the wavelength - it remained (and still is) insensitive to the motion of the observer. Given the formula:

(frequency) = (speed of light)/(wavelength)

the insensitiveness of the wavelength to variations in the speed of the observer implies that both the frequency AND THE SPEED OF LIGHT vary with the speed of the observer, in violation of special relativity:

http://a-levelphysicstutor.com/wav-doppler.php
"vO is the velocity of an observer moving towards the source. This velocity is independent of the motion of the source. Hence, the velocity of waves relative to the observer is c + vO. (...) The motion of an observer does not alter the wavelength. The increase in frequency is a result of the observer encountering more wavelengths in a given time."

http://www.donbosco-tournai.be/expo-...fetDoppler.pdf
"La variation de la fréquence observée lorsqu'il y a mouvement relatif entre la source et l'observateur est appelée effet Doppler. (...) 6. Source immobile - Observateur en mouvement: La distance entre les crêtes, la longueur d'onde lambda ne change pas. Mais la vitesse des crêtes par rapport à l'observateur change ! Lobservateur se rapproche de la source: f'=V'/(lambda)=f(1+Vo/V). (...) L'effet Doppler peut se produire pour toutes les sortes d'ondes."

http://www.radartutorial.eu/11.coherent/co06.fr.html
"L'effet Doppler est le décalage de fréquence d'une onde acoustique ou électromagnétique entre la mesure à l'émission et la mesure à la réception lorsque la distance entre l'émetteur et le récepteur varie au cours du temps. (...) Pour comprendre ce phénomène, il s'agit de penser à une onde à une fréquence donnée qui est émise vers un observateur en mouvement, ou vis-versa. LA LONGUEUR D'ONDE DU SIGNAL EST CONSTANTE mais si l'observateur se rapproche de la source, il se déplace vers les fronts d'ondes successifs et perçoit donc plus d'ondes par seconde que s'il était resté stationnaire, donc une augmentation de la fréquence. De la même manière, s'il s'éloigne de la source, les fronts d'onde l'atteindront avec un retard qui dépend de sa vitesse d'éloignement, donc une diminution de la fréquence. Dans le cas sonore, cela se traduit par un son plus aigu lors d'un rapprochement de la source et un son plus grave en s'éloignant de celle-ci. Dans le domaine de la lumière visible, on parle de décalage vers le bleu pour un rapprochement et vers le rouge dans le cas d'éloignement en se référant au spectre lumineux. La même chose s'applique à toutes les gammes d'ondes électromagnétiques dont les ondes utilisées par les radars."

Pentcho Valev
 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Fictitious Inertial Reference Frames in Relative Motion GSS Astronomy Misc 1 September 22nd 11 05:34 PM
Relative motion is backward to real motion jon car Astronomy Misc 1 September 15th 11 06:12 AM
NOVA's "Magnetic Storm" program; A.P.'s theory that Continental Drift is caused by the relative motion of the mantle versus crust a_plutonium Astronomy Misc 46 November 2nd 06 09:37 AM
Important find:when is the light wave-motion ?and when is particle-motion? xszxsz Research 0 October 27th 04 06:26 AM
Relative Motion G=EMC^2 Glazier Misc 0 July 19th 03 02:40 PM


All times are GMT +1. The time now is 10:54 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.