A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Astronomy Misc
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

EINSTEINIANA : THE ULTIMATE-SPEED-LIMIT RED HERRING



 
 
Thread Tools Display Modes
  #1  
Old July 30th 13, 04:06 PM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default EINSTEINIANA : THE ULTIMATE-SPEED-LIMIT RED HERRING

http://www.livescience.com/38511-spe...in-tested.html
"The speed of light is considered to be the ultimate cosmic speed limit, thanks to Einstein's special theory of relativity. But physicists aren't content to assume this limit without testing it."

Einstein's 1905 light postulate says that the speed of light is independent of the speed of the emitter. This, combined with the principle of relativity, validly leads to the conclusion that the speed of light (relative to the observer) is independent of the speed of the observer as well. This conclusion has been tested countless times (Doppler effect, stationary source, moving observer) and the result is straightforward: the conclusion is false, that is, the speed of light (relative to the observer) does depend on the speed of the observer.

In order to detract the attention from this and other failures of special relativity, Einsteinians have devised the ultimate-cosmic-speed-limit red herring. "Nothing can move faster than light according to special relativity" is the mantra, although there seems to be no valid deduction of "nothing can move faster than light" from Einstein's 1905 two postulates. Needless to say, Einsteinians have also wasted billions and billions in experiments gloriously showing that "nothing can move faster than light".

Pentcho Valev
  #2  
Old July 31st 13, 06:33 AM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default EINSTEINIANA : THE ULTIMATE-SPEED-LIMIT RED HERRING

When the observer starts moving towards the light source with speed v, the frequency he measures shifts from f=c/L to f'=(c+v)/L, where L is the wavelength. Since the motion of the observer does not affect the wavelength, the frequency shift from f=c/L to f'=(c+v)/L unequivocally shows that the speed of light relative to the observer has shifted from c to c'=c+v, in violation of special relativity:

http://www.hep.man.ac.uk/u/roger/PHY.../lecture18.pdf
Roger Barlow, Professor of Particle Physics: "The Doppler effect - changes in frequencies when sources or observers are in motion - is familiar to anyone who has stood at the roadside and watched (and listened) to the cars go by. It applies to all types of wave, not just sound. (...) Moving Observer. Now suppose the source is fixed but the observer is moving towards the source, with speed v. In time t, ct/lambda waves pass a fixed point. A moving point adds another vt/lambda. So f'=(c+v)/lambda."

http://www.einstein-online.info/spotlights/doppler
Albert Einstein Institute: "The frequency of a wave-like signal - such as sound or light - depends on the movement of the sender and of the receiver. This is known as the Doppler effect. (...) In the above paragraphs, we have only considered moving sources. In fact, a closer look at cases where it is the receiver that is in motion will show that this kind of motion leads to a very similar kind of Doppler effect. Here is an animation of the receiver moving towards the source: (...) By observing the two indicator lights, you can see for yourself that, once more, there is a blue-shift - the pulse frequency measured at the receiver is somewhat higher than the frequency with which the pulses are sent out. This time, the distances between subsequent pulses are not affected, but still there is a frequency shift: As the receiver moves towards each pulse, the time until pulse and receiver meet up is shortened. In this particular animation, which has the receiver moving towards the source at one third the speed of the pulses themselves, four pulses are received in the time it takes the source to emit three pulses."

http://a-levelphysicstutor.com/wav-doppler.php
"vO is the velocity of an observer moving towards the source. This velocity is independent of the motion of the source. Hence, the velocity of waves relative to the observer is c + vO. (...) The motion of an observer does not alter the wavelength. The increase in frequency is a result of the observer encountering more wavelengths in a given time."

http://farside.ph.utexas.edu/teachin...ml/node41.html
University of Texas: "Thus, the moving observer sees a wave possessing the same wavelength (...) but a different frequency (...) to that seen by the stationary observer. This phenomenon is known as the Doppler effect."

http://www.donbosco-tournai.be/expo-...fetDoppler.pdf
"La variation de la fréquence observée lorsqu'il y a mouvement relatif entre la source et l'observateur est appelée effet Doppler. (...) 6. Source immobile - Observateur en mouvement: La distance entre les crêtes, la longueur d'onde lambda ne change pas. Mais la vitesse des crêtes par rapport à l'observateur change !"

http://www.radartutorial.eu/11.coherent/co06.fr.html
"L'effet Doppler est le décalage de fréquence d'une onde acoustique ou électromagnétique entre la mesure à l'émission et la mesure à la réception lorsque la distance entre l'émetteur et le récepteur varie au cours du temps. (...) Pour comprendre ce phénomène, il s'agit de penser à une onde à une fréquence donnée qui est émise vers un observateur en mouvement, ou vis-versa. LA LONGUEUR D'ONDE DU SIGNAL EST CONSTANTE mais si l'observateur se rapproche de la source, il se déplace vers les fronts d'ondes successifs et perçoit donc plus d'ondes par seconde que s'il était resté stationnaire, donc une augmentation de la fréquence.. De la même manière, s'il s'éloigne de la source, les fronts d'onde l'atteindront avec un retard qui dépend de sa vitesse d'éloignement, donc une diminution de la fréquence. Dans le cas sonore, cela se traduit par un son plus aigu lors d'un rapprochement de la source et un son plus grave en s'éloignant de celle-ci. Dans le domaine de la lumière visible, on parle de décalage vers le bleu pour un rapprochement et vers le rouge dans le cas d'éloignement en se référant au spectre lumineux. La même chose s'applique à toutes les gammes d'ondes électromagnétiques dont les ondes utilisées par les radars."

http://researcher.nsc.gov.tw/public/...1016202571.pdf
Fang-Yuh Lo, Department of Physics, National Taiwan Normal University: "Observer moves toward source: frequency becomes higher. Observer moves away from source: frequency becomes lower. How much higher (lower)? Wavelength does not change. Change in velocity: Vnew=Vwave±Vobs."

http://physics.ucsd.edu/students/cou...cs2c/Waves.pdf
"Doppler effect (...) Let u be speed of source or observer (...) Doppler Shift: Moving Observer. Shift in frequency only, wavelength does not change. Speed observed = v+u (...) Observed frequency shift f'=f(1±u/v)"

http://physics.bu.edu/~redner/211-sp...9_doppler.html
"The Doppler effect is the shift in frequency of a wave that occurs when the wave source, or the detector of the wave, is moving. Applications of the Doppler effect range from medical tests using ultrasound to radar detectors and astronomy (with electromagnetic waves). (...) We will focus on sound waves in describing the Doppler effect, but it works for other waves too. (....) Let's say you, the observer, now move toward the source with velocity vO. You encounter more waves per unit time than you did before. Relative to you, the waves travel at a higher speed: v'=v+vO. The frequency of the waves you detect is higher, and is given by: f'=v'/(lambda)=(v+vO)/(lambda)."

http://www.usna.edu/Users/physics/mu...plerEffect.pdf
"Consider the case where the observer moves toward the source. In this case, the observer is rushing head-long into the wavefronts, so that we expect v'v. In fact, the wave speed is simply increased by the observer speed, as we can see by jumping into the observer's frame of reference. Thus, v'=v+v_o=v(1+v_o/v). Finally, the frequency must increase by exactly the same factor as the wave speed increased, in order to ensure that L'=L - v'/f'=v/f. Putting everything together, we thus have: OBSERVER MOVING TOWARD SOURCE: L'=L; f'=f(1+v_o/v); v'=v+v_o."

http://www.cmmp.ucl.ac.uk/~ahh/teach...24n/lect19.pdf
Tony Harker, University College London: "The Doppler Effect: Moving sources and receivers. The phenomena which occur when a source of sound is in motion are well known. The example which is usually cited is the change in pitch of the engine of a moving vehicle as it approaches. In our treatment we shall not specify the type of wave motion involved, and our results will be applicable to sound or to light. (...) Now suppose that the observer is moving with a velocity Vo away from the source. (...) If the observer moves with a speed Vo away from the source (...), then in a time t the number of waves which reach the observer are those in a distance (c-Vo)t, so the number of waves observed is (c-Vo)t/lambda, giving an observed frequency f'=f(1-Vo/c) when the observer is moving away from the source at a speed Vo."

Pentcho Valev
  #3  
Old July 31st 13, 05:53 PM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default EINSTEINIANA : THE ULTIMATE-SPEED-LIMIT RED HERRING

http://bertie.ccsu.edu/naturesci/PhilSci/Lakatos.html
"Lakatos distinguished between two parts of a scientific theory: its "hard core" which contains its basic assumptions (or axioms, when set out formally and explicitly), and its "protective belt", a surrounding defensive set of "ad hoc" (produced for the occasion) hypotheses. (...) In Lakatos' model, we have to explicitly take into account the "ad hoc hypotheses" which serve as the protective belt. The protective belt serves to deflect "refuting" propositions from the core assumptions..."

Length contraction, time dilation, relativity of simultaneity - these are the constituents of the "protective belt" deflecting refuting propositions from the fundamental falsehood of modern physics - the assumption (taken from the ether theory) that the speed of light is independent of the speed of the emitter. There is also a purely political protective belt consisting in systematic persecution and marginalization of people threatening the fundamental falsehood:

http://hps.elte.hu/PIRT.Budapest/
Conference broshu "While the organizing committee encourages critical investigations and welcomes both Einsteinian and non-Einsteinian (Lorentzian, etc.) approaches, including the recently proposed ether-type theories, it is assumed that the received formal structure of the theory is valid and anti-relativistic papers will not be accepted."

Pentcho Valev
 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
GEOMETRIZED GRAVITY: THE FUNDAMENTAL RED HERRING IN EINSTEINIANA Pentcho Valev Astronomy Misc 2 June 18th 13 06:02 PM
EINSTEINIANA: THE NEUTRINO RED HERRING Pentcho Valev Astronomy Misc 0 March 17th 12 01:41 PM
Article: Photons flout the light speed limit Pentcho Valev Astronomy Misc 0 August 19th 07 05:05 PM
Einstein's Gravitational Waves May Set Speed Limit For Pulsar Spin Ron Baalke Astronomy Misc 1 July 3rd 03 08:49 AM
Einstein's Gravitational Waves May Set Speed Limit For Pulsar Spin Ron Baalke News 0 July 2nd 03 08:24 PM


All times are GMT +1. The time now is 10:31 AM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.