A Space & astronomy forum. SpaceBanter.com

If this is your first visit, be sure to check out the FAQ by clicking the link above. You may have to register before you can post: click the register link above to proceed. To start viewing messages, select the forum that you want to visit from the selection below.

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily Report #5140

Thread Tools Display Modes
Old July 19th 10, 03:19 PM posted to sci.astro.hubble
Bassford, Lynn
external usenet poster
Posts: 44
Default Daily Report #5140

HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science


PERIOD COVERED: 5am July 16 - 5am July 19, 2010 (DOY 197/09:00z-200/09:00z)


Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be


#12330 REAcq(1,2,1) @197/19:28z and 21:04z failed to RGA, Scan Step
Limit on FGS1

Observations affected: COS #54-59 and ACS #120-126 Proposal #11658



GSAcq 25 25
FGS REAcq 24 22
OBAD with Maneuver 20 20




A Panchromatic Hubble Andromeda Treasury - I

We propose to image the north east quadrant of M31 to deep limits in
the UV, optical, and near-IR. HST imaging should resolve the galaxy
into more than 100 million stars, all with common distances and
foreground extinctions. UV through NIR stellar photometry (F275W,
F336W with WFC3/UVIS, F475W and F814W with ACS/WFC, and F110W and
F160W with WFC3/NIR) will provide effective temperatures for a wide
range of spectral types, while simultaneously mapping M31's
extinction. Our central science drivers are to: understand high-mass
variations in the stellar IMF as a function of SFR intensity and
metallicity; capture the spatially-resolved star formation history of
M31; study a vast sample of stellar clusters with a range of ages and
metallicities. These are central to understanding stellar evolution
and clustered star formation; constraining ISM energetics; and
understanding the counterparts and environments of transient objects
(novae, SNe, variable stars, x-ray sources, etc.). As its legacy, this
survey adds M31 to the Milky Way and Magellanic Clouds as a
fundamental calibrator of stellar evolution and star-formation
processes for understanding the stellar populations of distant
galaxies. Effective exposure times are 977s in F275W, 1368s in F336W,
4040s in F475W, 4042s in F814W, 699s in F110W, and 1796s in F160W,
including short exposures to avoid saturation of bright sources. These
depths will produce photon-limited images in the UV. Images will be
crowding-limited in the optical and NIR, but will reach below the red
clump at all radii. The images will reach the Nyquist sampling limit
in F160W, F475W, and F814W.

S/C 12046

COS FUV DCE Memory Dump

Whenever the FUV detector high voltage is on, count rate and current
draw information is collected, monitored, and saved to DCE memory.
Every 10 msec the detector samples the currents from the HV power
supplies (HVIA, HVIB) and the AUX power supply (AUXI). The last 1000
samples are saved in memory, along with a histogram of the number of
occurrences of each current value.

In the case of a HV transient (known as a "crackle" on FUSE), where
one of these currents exceeds a preset threshold for a persistence
time, the HV will shut down, and the DCE memory will be dumped and
examined as part of the recovery procedure. However, if the current
exceeds the threshold for less than the persistence time (a
"mini-crackle" in FUSE parlance), there is no way to know without
dumping DCE memory. By dumping and examining the histograms regularly,
we will be able to monitor any changes in the rate of "mini-crackles"
and thus learn something about the state of the detector.

ACS/WFC 11996

CCD Daily Monitor (Part 3)

This program comprises basic tests for measuring the read noise and
dark current of the ACS WFC and for tracking the growth of hot pixels.
The recorded frames are used to create bias and dark reference images
for science data reduction and calibration. This program will be
executed four days per week (Mon, Wed, Fri, Sun) for the duration of
Cycle 17. To facilitate scheduling, this program is split into three
proposals. This proposal covers 308 orbits (19.25 weeks) from 21 June
2010 to 1 November 2010.

WFC3/IR/S/C 11929

IR Dark Current Monitor

Analyses of ground test data showed that dark current signals are more
reliably removed from science data using darks taken with the same
exposure sequences as the science data, than with a single dark
current image scaled by desired exposure time. Therefore, dark current
images must be collected using all sample sequences that will be used
in science observations. These observations will be used to monitor
changes in the dark current of the WFC3-IR channel on a day-to-day
basis, and to build calibration dark current ramps for each of the
sample sequences to be used by Gos in Cycle 17. For each sample
sequence/array size combination, a median ramp will be created and
delivered to the calibration database system (CDBS).

WFC3/UVIS 11908

Cycle 17: UVIS Bowtie Monitor

Ground testing revealed an intermittent hysteresis type effect in the
UVIS detector (both CCDs) at the level of ~1%, lasting hours to days.
Initially found via an unexpected bowtie-shaped feature in flatfield
ratios, subsequent lab tests on similar e2v devices have since shown
that it is also present as simply an overall offset across the entire
CCD, i.e., a QE offset without any discernable pattern. These lab
tests have further revealed that overexposing the detector to count
levels several times full well fills the traps and effectively
neutralizes the bowtie. Each visit in this proposal acquires a set of
three 3x3 binned internal flatfields: the first unsaturated image will
be used to detect any bowtie, the second, highly exposed image will
neutralize the bowtie if it is present, and the final image will allow
for verification that the bowtie is gone.

WFC3/UVIS 11907

UVIS Cycle 17 Contamination Monitor

The UV throughput of WFC3 during Cycle 17 is monitored via weekly
standard star observations in a subset of key filters covering
200-600nm and F606W, F814W as controls on the red end. The data will
provide a measure of throughput levels as a function of time and
wavelength, allowing for detection of the presence of possible

WFC3/UVIS 11905

WFC3 UVIS CCD Daily Monitor

The behavior of the WFC3 UVIS CCD will be monitored daily with a set
of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K
subarray biases are acquired at less frequent intervals throughout the
cycle to support subarray science observations. The internals from
this proposal, along with those from the anneal procedure (Proposal
11909), will be used to generate the necessary superbias and superdark
reference files for the calibration pipeline (CDBS).

STIS/MA1/MA2 11857

STIS Cycle 17 MAMA Dark Monitor

This proposal monitors the behavior of the dark current in each of the
MAMA detectors.

The basic monitor takes two 1380s ACCUM darks each week with each
detector. However, starting Oct 5, pairs are only included for weeks
that the LRP has external MAMA observations planned. The weekly pairs
of exposures for each detector are linked so that they are taken at
opposite ends of the same SAA free interval. This pairing of exposures
will make it easier to separate long and short term temporal
variability from temperature dependent changes.

For both detectors, additional blocks of exposures are taken once
every six months. These are groups of five 1314s FUV-MAMA Time-Tag
darks or five 3x315s NUV ACCUM darks distributed over a single
SAA-free interval. This will give more information on the brightness
of the FUV MAMA dark current as a function of the amount of time that
the HV has been on, and for the NUV MAMA will give a better measure of
the short term temperature dependence.

STIS/CC 11847

CCD Bias Monitor-Part 2

Monitor the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1,
and 1x1 at gain = 4, to build up high-S/N superbiases and track the
evolution of hot columns.

STIS/CC 11845

CCD Dark Monitor Part 2

Monitor the darks for the STIS CCD.

WFC3/IR 11838

Completing a Flux-limited Survey for X-ray Emission from Radio Jets

We will measure the changing flow speeds, magnetic fields, and energy
fluxes in well-resolved quasar jets found in our short-exposure
Chandra survey by combining new, deep Chandra data with radio and
optical imaging. We will image each jet with sufficient sensitivity to
estimate beaming factors and magnetic fields in several distinct
regions, and so map the variations in these parameters down the jets.
HST observations will help diagnose the role of synchrotron emission
in the overall SED, and may reveal condensations on scales less than
0.1 arcsec.


The Impact of Starbursts on the Gaseous Halos of Galaxies

Perhaps the most important (yet uncertain) aspects of galaxy evolution
are the processes by which galaxies accrete gas and by which the
resulting star formation and black hole growth affects this accreting
gas. It is believed that both the form of the accretion and the nature
of the feedback change as a function of the galaxy mass. At low mass
the gas comes in cold and the feedback is provided by massive stars.
At high mass, the gas comes in hot, and the feedback is from an AGN.
The changeover occurs near the mass where the galaxy population
transitions from star-forming galaxies to red and dead ones. The
population of red and dead galaxies is building with cosmic time, and
it is believed that feedback plays an important role in this process:
shutting down star formation by heating and/or expelling the reservoir
of cold halo gas. To investigate these ideas, we propose to use COS
far-UV spectra of background QSOs to measure the properties of the
halo gas in a sample of galaxies near the transition mass that have
undergone starbursts within the past 100 Myr to 1 Gyr. The galactic
wind associated with the starburst is predicted to have affected the
properties of the gaseous halo. To test this, we will compare the
properties of the halos of the post-starburst galaxies to those of a
control sample of galaxies matched in mass and QSO impact parameter.
Do the halos of the post-starburst galaxies show a higher incidence
rate of Ly-Alpha and metal absorption-lines? Are the kinematics of the
halo gas more disturbed in the post-starbursts? Has the wind affected
the ionization state and/or the metallicity of the halo? These data
will provide fresh new insights into the role of feedback from massive
stars on the evolution of galaxies, and may also offer clues about the
properties of the QSO metal absorption-line systems at high-redshift .

WFC3/IR 11712

Calibration of Surface Brightness Fluctuations for WFC3/IR

We aim to characterize galaxy surface brightness fluctuations (SBF),
and calibrate the SBF distance method, in the F110W and F160W filters
of the Wide Field Camera 3 IR channel. Because of the very high
throughput of F110W and the good match of F160W to the standard H
band, we anticipate that both of these filters will be popular choices
for galaxy observations with WFC3/IR. The SBF signal is typically an
order of magnitude brighter in the near-IR than in the optical, and
the characteristics (sensitivity, FOV, cosmetics) of the WFC3/IR
channel will be enormously more efficient for SBF measurements than
previously available near-IR cameras. As a result, our proposed SBF
calibration will allow accurate distance derivation whenever an
early-type or bulge-dominated galaxy is observed out to a distance of
150 Mpc or more (i.e., out to the Hubble flow) in the calibrated
passbands. For individual galaxy observations, an accurate distance is
useful for establishing absolute luminosities, black hole masses,
linear sizes, etc. Eventually, once a large number of galaxies have
been observed across the sky with WFC3/IR, this SBF calibration will
enable accurate mapping of the total mass density distribution in the
local universe using the data available in the HST archive. The
proposed observations will have additional important scientific value;
in particular, we highlight their usefulness for understanding the
nature of multimodal globular cluster color distributions in giant
elliptical galaxies.

WFC3/UVIS 11697

Proper Motion Survey of Classical and SDSS Local Group Dwarf Galaxies

Using the superior resolution of HST, we propose to continue our
proper motion survey of Galactic dwarf galaxies. The target galaxies
include one classical dwarf, Leo II, and six that were recently
identified in the Sloan Digital Sky Survey data: Bootes I, Canes
Venatici I, Canes Venatici II, Coma Berenices, Leo IV, and Ursa Major
II. We will observe a total of 16 fields, each centered on a
spectroscopically-confirmed QSO. Using QSOs as standards of rest in
measuring absolute proper motions has proven to be the most accurate
and most efficient method. HST is our only option to quickly determine
the space motions of the SDSS dwarfs because suitable ground-based
imaging is only a few years old and such data need several decades to
produce a proper motion. The two most distant galaxies in our sample
will require time baselines of four years to achieve our goal of a
30-50 km/s uncertainty in the tangential velocity; given this and the
finite lifetime of HST, it is imperative that first-epoch observations
be taken in this cycle. The SDSS dwarfs have dramatically lower
surface brightnesses and luminosities than the classical dwarfs.
Proper motions are crucial for determining orbits of the galaxies and
knowing the orbits will allow us to test theories for the formation
and evolution of these galaxies and, more generally, for the formation
of the Local Group.

WFC3/IR 11696

Infrared Survey of Star Formation Across Cosmic Time

We propose to use the unique power of WFC3 slitless spectroscopy to
measure the evolution of cosmic star formation from the end of the
reionization epoch at z6 to the close of the galaxy- building era at
z~0.3.Pure parallel observations with the grisms have proven to be
efficient for identifying line emission from galaxies across a broad
range of redshifts. The G102 grism on WFC3 was designed to extend this
capability to search for Ly-alpha emission from the first galaxies.
Using up to 250 orbits of pure parallel WFC3 spectroscopy, we will
observe about 40 deep (4-5 orbit) fields with the combination of G102
and G141, and about 20 shallow (2-3 orbit) fields with G141 alone.

Our primary science goals at the highest redshifts a (1) Detect Lya
in ~100 galaxies with z5.6 and measure the evolution of the Lya
luminosity function, independent of of cosmic variance; 2) Determine
the connection between emission line selected and continuum-break
selected galaxies at these high redshifts, and 3) Search for the
proposed signature of neutral hydrogen absorption at re-ionization. At
intermediate redshifts we will (4) Detect more than 1000 galaxies in
Halpha at 0.5z1.8 to measure the evolution of the
extinction-corrected star formation density across the peak epoch of
star formation. This is over an order-of-magnitude improvement in the
current statistics, from the NICMOS Parallel grism survey. (5) Trace
``cosmic downsizing" from 0.5z2.2; and (6) Estimate the evolution in
reddening and metallicty in star- forming galaxies and measure the
evolution of the Seyfert population. For hundreds of spectra we will
be able to measure one or even two line pair ratios -- in particular,
the Balmer decrement and [OII]/[OIII] are sensitive to gas reddening
and metallicity. As a bonus, the G102 grism offers the possibility of
detecting Lya emission at z=7-8.8.

To identify single-line Lya emitters, we will exploit the wide
0.8--1.9um wavelength coverage of the combined G102+G141 spectra. All
[OII] and [OIII] interlopers detected in G102 will be reliably
separated from true LAEs by the detection of at least one strong line
in the G141 spectrum, without the need for any ancillary data. We
waive all proprietary rights to our data and will make high-level data
products available through the ST/ECF.

COS/FUV 11687

SNAPing Coronal Iron

This is a Snapshot Survey to explore two forbidden lines of highly
ionized iron in late-type coronal sources. Fe XII 1349 (T~ 2 MK) and
Fe XXI 1354 (T~ 10 MK) -- well known to Solar Physics -- have been
detected in about a dozen cool stars, mainly with HST/STIS. The UV
coronal forbidden lines are important because they can be observed
with velocity resolution of better than 15 km/s, whereas even the
state-of-the-art X-ray spectrometers on Chandra can manage only 300
km/s in the kilovolt band where lines of highly ionized iron more
commonly are found. The kinematic properties of hot coronal plasmas,
which are of great interest to theorists and modelers, thus only are
accessible in the UV at present. The bad news is that the UV coronal
forbidden lines are faint, and were captured only in very deep
observations with STIS. The good news is that 3rd-generation Cosmic
Origins Spectrograph, slated for installation in HST by SM4, in a mere
25 minute exposure with its G130M mode can duplicate the sensitivity
of a landmark 25-orbit STIS E140M observation of AD Leo, easily the
deepest such exposure of a late-type star so far. Our goal is to build
up understanding of the properties of Fe XII and Fe XXI in additional
objects beyond the current limited sample: how the lineshapes depend
on activity, whether large scale velocity shifts can be detected, and
whether the dynamical content of the lines can be inverted to map the
spatial morphology of the stellar corona (as in "Doppler Imaging'').
In other words, we want to bring to bear in the coronal venue all the
powerful tricks of spectroscopic remote sensing, well in advance of
the time that this will be possible exploiting the corona's native
X-ray radiation. The 1290-1430 band captured by side A of G130M also
contains a wide range of key plasma diagnostics that form at
temperatures from below 10, 000 K (neutral lines of CNO), to above
200, 000 K (semi-permitted O V 1371), including the important bright
multiplets of C II at 1335 and Si IV at 1400; yielding a diagnostic
gold mine for the subcoronal atmosphere. Because of the broad value of
the SNAP spectra, beyond the coronal iron project, we waive the normal
proprietary rights.

WFC3/IR 11666

Chilly Pairs: A Search for the Latest-type Brown Dwarf Binaries and
the Prototype Y Dwarf

We propose to use HST/WFC3 to image a sample of 27 of the nearest (
20 pc) and lowest luminosity T-type brown dwarfs in order to identify
and characterize new very low mass binary systems. Only 3 late-type T
dwarf binaries have been found to date, despite that fact that these
systems are critical benchmarks for evolutionary and atmospheric
models at the lowest masses. They are also the most likely systems to
harbor Y dwarf companions, an as yet unpopulated putative class of
very cold (T 600 K) brown dwarfs. Our proposed program will more
than double the number of T5-T9 dwarfs imaged at high resolution, with
an anticipated yield of ~5 new binaries with initial characterization
of component spectral types. We will be able to probe separations
sufficient to identify systems suitable for astrometric orbit and
dynamical mass measurements. We also expect one of our discoveries to
contain the first Y-type brown dwarf. Our proposed program complements
and augments ongoing ground-based adaptive optics surveys and provides
pathway science for JWST.

WFC3/UVIS 11661

The Black Hole Mass - Bulge Luminosity Relationship for the Nearest
Reverberation-Mapped AGNs

We propose to obtain WFC3 host galaxy images of the eight nearest AGNs
with masses from reverberation mapping, and one star as a PSF model.
These images will allow us to determine with unprecedented accuracy
the bulge luminosities of the host galaxies, a goal which is not
achievable from the ground due to the blurring of the very bright PSF
component under typical, and even very good, seeing conditions.
High-resolution ACS images of the host galaxies of more luminous AGNs
reveal that the black hole mass-bulge luminosity and black hole
mass-bulge mass relationships for AGNs are not well constrained and
arise from what appear to be fundamentally flawed data sets. With the
addition of the images proposed here to our current sample of ACS
images, we will be able to extend our determinations of the black hole
mass- bulge luminosity and black hole mass-bulge mass relationships
for AGNs by an order of magnitude and test our preliminary results for
these fundamentally important relationships against those previously
determined for quiescent galaxies.


Probing the Outer Regions of M31 with QSO Absorption Lines

We propose HST-COS spectroscopy of 10 quasars behind M31. Absorption
lines due to MgII, FeII, CIV, and a variety of other lines will be
searched for and measured. Six quasars lie between 1 and 4.2 Holmberg
radii near the major axis on the southwest side, where confusion with
Milky Way gas is minimized. Two lie even farther out on the southwest
side of the major axis. One lies within 1 Holmberg radius. Two of the
10 pass through M31's high velocity clouds seen in a detailed 21 cm
emission map. Exposure time estimates were based on SDSS magnitudes
and available GALEX magnitudes. Thus, using the most well-studied
external spiral galaxy in the sky, our observations will permit us to
check, better than ever before, the standard picture that quasar
metal-line absorption systems such as MgII and CIV arise in an
extended gaseous halo/disk of a galaxy well beyond its observable
optical radius. The observations will yield insights into the nature
of the gas and its connection to the very extended stellar components
of M31 that have recently been studied. Notably the observations have
the potential of extending M31's rotation curve to very large
galactocentric distances, thereby placing new constraints on M31's
dark matter halo.

Finally, we also request that the coordinated parallel orbits be
allocated to this program so that we may image the resolved stellar
content of M31's halo and outer disk.

WFC3/IR 11631

Binary Brown Dwarfs and the L/T Transition

Brown dwarfs traverse spectral types M, L and T as their atmospheric
structure evolves and they cool into oblivion. This SNAPSHOT program
will obtain WFC3-IR images of 45 nearby late-L and early-T dwarfs to
investigate the nature of the L/T transition. Recent analyses have
suggested that a substantial proportion of late-L and early-T dwarfs
are binaries, comprised of an L dwarf primary and T dwarf secondary.
WFC3-IR observations will let us quantify this suggestion by expanding
coverage to a much larger sample, and permitting comparison of the L/T
binary fraction against 'normal' ultracool dwarfs. Only eight L/T
binaries are currently known, including several that are poorly
resolved: we anticipate at least doubling the number of resolved
systems. The photometric characteristics of additional resolved
systems will be crucial to constraining theoretical models of these
late-type ultracool dwarfs. Finally, our data will also be eminently
suited to searching for extremely low luminosity companions,
potentially even reaching the Y dwarf regime.


GHOSTS: Stellar Outskirts of Massive Spiral Galaxies

We propose to continue our highly successful GHOSTS HST survey of the
resolved stellar populations of nearby, massive disk galaxies using
SNAPs. These observations provide star counts and color-magnitude
diagrams 2-3 magnitudes below the tip of the Red Giant Branch of the
outer disk and halo of each galaxy. We will measure the metallicity
distribution functions and stellar density profiles from star counts
down to very low average surface brightnesses, equivalent to ~32 V-mag
per square arcsec.

This proposal will substantially improve our unique sampling of galaxy
outskirts. Our targets cover a range in galaxy mass, luminosity,
inclination, and morphology. As a function of these galaxy properties,
this survey provides: - the most extensive, systematic measurement of
radial light profiles and axial ratios of the diffuse stellar halos
and outer disks of spiral galaxies; - a comprehensive analysis of halo
metallicity distributions as function of galaxy type and position
within the galaxy; - an unprecedented study of the stellar metallicity
and age distribution in the outer disk regions where the disk
truncations occur; - the first comparative study of globular clusters
and their field stellar populations.

We will use these fossil records of the galaxy assembly process to
test halo formation models within the hierarchical galaxy formation


How Galaxies Acquire their Gas: A Map of Multiphase Accretion and
Feedback in Gaseous Galaxy Halos

We propose to address two of the biggest open questions in galaxy
formation - how galaxies acquire their gas and how they return it to
the IGM - with a concentrated COS survey of diffuse multiphase gas in
the halos of SDSS galaxies at z = 0.15 - 0.35. Our chief science goal
is to establish a basic set of observational facts about the physical
state, metallicity, and kinematics of halo gas, including the sky
covering fraction of hot and cold material, the metallicity of infall
and outflow, and correlations with galaxy stellar mass, type, and
color - all as a function of impact parameter from 10 - 150 kpc.
Theory suggests that the bimodality of galaxy colors, the shape of the
luminosity function, and the mass-metallicity relation are all
influenced at a fundamental level by accretion and feedback, yet these
gas processes are poorly understood and cannot be predicted robustly
from first principles. We lack even a basic observational assessment
of the multiphase gaseous content of galaxy halos on 100 kpc scales,
and we do not know how these processes vary with galaxy properties.
This ignorance is presently one of the key impediments to
understanding galaxy formation in general. We propose to use the
high-resolution gratings G130M and G160M on the Cosmic Origins
Spectrograph to obtain sensitive column density measurements of a
comprehensive suite of multiphase ions in the spectra of 43 z 1 QSOs
lying behind 43 galaxies selected from the Sloan Digital Sky Survey.
In aggregate, these sightlines will constitute a statistically sound
map of the physical state and metallicity of gaseous halos, and
subsets of the data with cuts on galaxy mass, color, and SFR will seek
out predicted variations of gas properties with galaxy properties. Our
interpretation of these data will be aided by state-of-the-art
hydrodynamic simulations of accretion and feedback, in turn providing
information to refine and test such models. We will also use Keck,
MMT, and Magellan (as needed) to obtain optical spectra of the QSOs to
measure cold gas with Mg II, and optical spectra of the galaxies to
measure SFRs and to look for outflows. In addition to our other
science goals, these observations will help place the Milky Way's
population of multiphase, accreting High Velocity Clouds (HVCs) into a
global context by identifying analogous structures around other
galaxies. Our program is designed to make optimal use of the unique
capabilities of COS to address our science goals and also generate a
rich dataset of other absorption-line systems.

WFC3/UVIS 11594

A WFC3 Grism Survey for Lyman Limit Absorption at z=2

We propose to conduct a spectroscopic survey of Lyman limit absorbers
at redshifts 1.8 z 2.5, using WFC3 and the G280 grism. This
proposal intends to complete an approved Cycle 15 SNAP program
(10878), which was cut short due to the ACS failure. We have selected
64 quasars at 2.3 z 2.6 from the Sloan Digital Sky Survey
Spectroscopic Quasar Sample, for which no BAL signature is found at
the QSO redshift and no strong metal absorption lines are present at z
2.3 along the lines of sight. The survey has three main

observational goals. First, we will determine the redshift frequency
dn/dz of the LLS over the column density range 16.0 log(NHI) 20.3
cm^-2. Second, we will measure the column density frequency
distribution f(N) for the partial Lyman limit systems (PLLS) over the
column density range 16.0 log(NHI) 17.5 cm^-2. Third, we will
identify those sightlines which could provide a measurement of the
primordial D/H ratio. By carrying out this survey, we can also help
place meaningful constraints on two key quantities of cosmological
relevance. First, we will estimate the amount of metals in the LLS
using the f(N), and ground based observations of metal line
transitions. Second, by determining f(N) of the PLLS, we can constrain
the amplitude of the ionizing UV background at z~2 to a greater
precision. This survey is ideal for a snapshot observing program,
because the on-object integration times are all well below 30 minutes,
and follow-up observations from the ground require minimal telescope
time due to the QSO sample being bright.

WFC3/UVIS 11577

Opening New Windows on the Antennae with WFC3

We propose to use WFC3 to provide key observations of young star
clusters in "The Antennae" (NGC4038/39). Of prime importance is the
WFC3's ability to push the limiting UV magnitude FIVE mag deeper than
our previous WFPC2 observations. This corresponds to pushing the
limiting cluster mass from ~10**5 to ~10**3 solar masses for cluster
ages ~10**8 yrs. In addition, the much wider field of view of the WFC3
IR channel will allow us to map out both colliding disks rather than
just the Overlap Region between them. This will be especially
important for finding the youngest clusters that are still embedded in
their placental cocoons. The extensive set of narrow-band filters will
provide an effective means for determining the properties of shocks,
which are believed to be a primary triggering mechanism for star
formation. We will also use ACS in parallel with WFC3 to observe
portions of both the northern and southern tails at no additional
orbital cost. Finally, one additional primary WFC3 orbit will be used
to supplement exisiting HST observations of the star-forming "dwarf"
galaxy at the end of the southern tail. Hence, when completed we will
have full UBVI + H_alpha coverage (or more for the main galaxy) of
four different environments in the Antennae. In conjunction with the
extensive multi- wavelength database we have collected (both HST and
ground based) these observations will provide answers to fundamental
questions such as: How do these clusters form and evolve? How is star
formation triggered? How do star clusters affect the local and global
ISM, and the evolution of the galaxy as a whole? The Antennae galaxies
are the nearest example of a major disk--disk merger, and hence may
represent our best chance for understanding how mergers form
tremendous numbers of clusters and stars, both in the local universe
and during galaxy assembly at high redshift.

STIS/CC/MA 11576

Physical Parameters of the Upper Atmosphere of the Extrasolar Planet

One of the most studied extrasolar planet, HD209458b, has revealed
both its lower and upper atmosphere thanks to HST and Spitzer

Through transmission spectroscopy technique, several atmospheric
species were detected: NaI, HI, OI and CII. Using STIS archived
transit absorption spectrum from 3000 to 8000 Angstrom, we obtained
detailed constraints on the vertical profile of temperature, pressure
and abundances (Sing et al 2008a, 2008b, Lecavelier et al. 2008b).

By observing in the NUV, from 2300 to 3100 Angstrom, we expect to
obtain new constraints on the physical conditions and the chemical
composition of the upper atmosphe temperature/pressure profile up
to very high in the atmosphere, abundance and condensation altitudes
of new species, and new insight in the atmospheric escape and
ionization state at the upper levels. The observation of four
HD209458b transits with a single E230M setting will give access to
many NUV atomic lines addressing these issues. The proposed
observations will probe, for the first time, in details the atmosphere
of a hot Jupiter, thus bench marking follow up studies.

STIS/CCD 11567

Boron Abundances in Rapidly Rotating Early-B Stars

Models of rotation in early-B stars predict that rotationally driven
mixing should deplete surface boron abundances during the
main-sequence lifetime of many stars. However, recent work has shown
that many boron depleted stars are intrinsically slow rotators for
which models predict no depletion should have occurred, while
observations of nitrogen in some more rapidly rotating stars show less
mixing than the models predict. Boron can provide unique information
on the earliest stages of mixing in B stars, but previous surveys have
been biased towards narrow- lined stars because of the difficulty in
measuring boron abundances in rapidly rotating stars. The two targets
observed as part of our Cycle 13 SNAP program 10175, just before STIS
failed, demonstrate that it is possible to make useful boron abundance
measurements for early-B stars with Vsin(i) above 100 km/s. We propose
to extend that survey to a large enough sample of stars to allow
statistically significant tests of models of rotational mixing in
early-B stars.


Star Formation in Nearby Galaxies

Star formation is a fundamental astrophysical process; it controls
phenomena ranging from the evolution of galaxies and nucleosynthesis
to the origins of planetary systems and abodes for life. The WFC3,
optimized at both UV and IR wavelengths and equipped with an extensive
array of narrow-band filters, brings unique capabilities to this area
of study. The WFC3 Scientific Oversight Committee (SOC) proposes an
integrated program on star formation in the nearby universe which will
fully exploit these new abilities. Our targets range from the
well-resolved R136 in 30 Dor in the LMC (the nearest super star
cluster) and M82 (the nearest starbursting galaxy) to about half a
dozen other nearby galaxies that sample a wide range of star-formation
rates and environments. Our program consists of broad band
multiwavelength imaging over the entire range from the UV to the
near-IR, aimed at studying the ages and metallicities of stellar
populations, revealing young stars that are still hidden by dust at
optical wavelengths, and showing the integrated properties of star
clusters. Narrow-band imaging of the same environments will allow us
to measure star-formation rates, gas pressure, chemical abundances,
extinction, and shock morphologies. The primary scientific issues to
be addressed a (1) What triggers star formation? (2) How do the
properties of star-forming regions vary among different types of
galaxies and environments of different gas densities and compositions?
(3) How do these different environments affect the history of star
formation? (4) Is the stellar initial mass function universal or
determined by local conditions?

WFC3/ACS/IR 11142

Revealing the Physical Nature of Infrared Luminous Galaxies at
0.3z2.7 Using HST and Spitzer

We aim to determine physical properties of IR luminous galaxies at
0.3z2.7 by requesting coordinated HST/NIC2 and MIPS 70um
observations of a unique, 24um flux-limited sample with complete
Spitzer mid-IR spectroscopy. The 150 sources investigated in this
program have S(24um) 0.8mJy and their mid-IR spectra have already
provided the majority targets with spectroscopic redshifts
(0.3z2.7). The proposed 150~orbits of NIC2 and 66~hours of MIPS 70um
will provide the physical measurements of the light distribution at
the rest-frame ~8000A and better estimates of the bolometric
luminosity. Combining these parameters together with the rich suite of
spectral diagnostics from the mid-IR spectra, we will (1) measure how
common mergers are among LIRGs and ULIRGs at 0.3z2.7, and establish
if major mergers are the drivers of z1 ULIRGs, as in the local
Universe, (2) study the co-evolution of star formation and blackhole
accretion by investigating the relations between the fraction of
starburst/AGN measured from mid-IR spectra vs. HST morphologies,
L(bol) and z, and (3) obtain the current best estimates of the far-IR
emission, thus L(bol) for this sample, and establish if the relative
contribution of mid-to-far IR dust emission is correlated with
morphology (resolved vs. unresolved).


Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Daily Report Cooper, Joe Hubble 0 December 22nd 08 05:17 PM
Daily Report #4558 Cooper, Joe Hubble 0 March 3rd 08 03:13 PM
Daily Report #4556 Cooper, Joe Hubble 0 February 28th 08 04:04 PM
Daily Report [email protected] Hubble 0 October 29th 04 04:59 PM
HST Daily Report 131 George Barbehenn Hubble 0 May 11th 04 02:48 PM

All times are GMT +1. The time now is 08:38 PM.

Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.
Copyright 2004-2022 SpaceBanter.com.
The comments are property of their posters.