A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Astronomy Misc
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Why Einstein's General Relativity Predicts Nothing



 
 
Thread Tools Display Modes
  #1  
Old October 13th 17, 09:33 AM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default Why Einstein's General Relativity Predicts Nothing

Below Einstein defines two types of theory - empirical and deductive - and it is unquestionable that the predictions of a deductive theory do matter. The problem is: Do the predictions of an EMPIRICAL theory matter in physics? If not, the implication is that Einstein's general relativity makes no important predictions.

Albert Einstein: "From a systematic theoretical point of view, we may imagine the process of evolution of an empirical science to be a continuous process of induction. Theories are evolved and are expressed in short compass as statements of a large number of individual observations in the form of empirical laws, from which the general laws can be ascertained by comparison. Regarded in this way, the development of a science bears some resemblance to the compilation of a classified catalogue. It is, as it were, a purely empirical enterprise. But this point of view by no means embraces the whole of the actual process ; for it slurs over the important part played by intuition and deductive thought in the development of an exact science. As soon as a science has emerged from its initial stages, theoretical advances are no longer achieved merely by a process of arrangement. Guided by empirical data, the investigator rather develops a system of thought which, in general, is built up logically from a small number of fundamental assumptions, the so-called axioms."
https://www.marxists.org/reference/a...ative/ap03.htm

Sabine Hossenfelder describes a deplorable situation in fundamental physics:

Sabine Hossenfelder: "Is The Inflationary Universe A Scientific Theory? Not Anymore. It is this abundance of useless models that gives rise to the criticism that inflation is not a scientific theory. And on that account, the criticism is justified. It's not good scientific practice. It is a practice that, to say it bluntly, has become commonplace because it results in papers, not because it advances science." https://www.forbes.com/sites/startsw...y-not-anymore/

Sabine Hossenfelder (Bee): "The criticism you raise that there are lots of speculative models that have no known relevance for the description of nature has very little to do with string theory but is a general disease of the research area. Lots of theorists produce lots of models that have no chance of ever being tested or ruled out because that's how they earn a living. The smaller the probability of the model being ruled out in their lifetime, the better. It's basic economics. Survival of the 'fittest' resulting in the natural selection of invincible models that can forever be amended." http://www.math.columbia.edu/~woit/wordpress/?p=9375

What is going on? Is this a human nature's problem - e.g. bad people of today do things that good people of the past didn't? Of course not. Rather, the scientific method was changed long ago and theoretical physics has not been science since then. The transition was from deductivism to empiricism, or from "deducing the equation" to "guessing the equation":

Richard Feynman (50:07): "Dirac discovered the correct laws for relativity quantum mechanics simply by guessing the equation. The method of guessing the equation seems to be a pretty effective way of guessing new laws."
https://www.youtube.com/watch?v=kd0xTfdt6qw&t=2368s

Actually the anti-deductive movement started with Einstein's general relativity (special relativity was deductive). Einstein and his mathematical friends spent a few years tirelessly "guessing the equation" until "excellent agreement with observation" was reached:

Michel Janssen: "But - as we know from a letter to his friend Conrad Habicht of December 24, 1907 - one of the goals that Einstein set himself early on, was to use his new theory of gravity, whatever it might turn out to be, to explain the discrepancy between the observed motion of the perihelion of the planet Mercury and the motion predicted on the basis of Newtonian gravitational theory. [...] The Einstein-Grossmann theory - also known as the "Entwurf" ("outline") theory after the title of Einstein and Grossmann's paper - is, in fact, already very close to the version of general relativity published in November 1915 and constitutes an enormous advance over Einstein's first attempt at a generalized theory of relativity and theory of gravitation published in 1912. The crucial breakthrough had been that Einstein had recognized that the gravitational field - or, as we would now say, the inertio-gravitational field - should not be described by a variable speed of light as he had attempted in 1912, but by the so-called metric tensor field.. The metric tensor is a mathematical object of 16 components, 10 of which independent, that characterizes the geometry of space and time. In this way, gravity is no longer a force in space and time, but part of the fabric of space and time itself: gravity is part of the inertio-gravitational field. Einstein had turned to Grossmann for help with the difficult and unfamiliar mathematics needed to formulate a theory along these lines. [...] Einstein did not give up the Einstein-Grossmann theory once he had established that it could not fully explain the Mercury anomaly. He continued to work on the theory and never even mentioned the disappointing result of his work with Besso in print. So Einstein did not do what the influential philosopher Sir Karl Popper claimed all good scientists do: once they have found an empirical refutation of their theory, they abandon that theory and go back to the drawing board. [...] On November 4, 1915, he presented a paper to the Berlin Academy officially retracting the Einstein-Grossmann equations and replacing them with new ones. On November 11, a short addendum to this paper followed, once again changing his field equations. A week later, on November 18, Einstein presented the paper containing his celebrated explanation of the perihelion motion of Mercury on the basis of this new theory. Another week later he changed the field equations once more. These are the equations still used today. This last change did not affect the result for the perihelion of Mercury. Besso is not acknowledged in Einstein's paper on the perihelion problem. Apparently, Besso's help with this technical problem had not been as valuable to Einstein as his role as sounding board that had earned Besso the famous acknowledgment in the special relativity paper of 1905. Still, an acknowledgment would have been appropriate. After all, what Einstein had done that week in November, was simply to redo the calculation he had done with Besso in June 1913, using his new field equations instead of the Einstein-Grossmann equations. It is not hard to imagine Einstein's excitement when he inserted the numbers for Mercury into the new expression he found and the result was 43", in excellent agreement with observation."
https://netfiles.umn.edu/users/janss...0page/EBms.pdf

"Guessing the equation" is naturally followed by "guessing the fudge factor". In the video below, at 0:57, a fudge factor is added to an equation in an empirical model (Einstein's general relativity), then at 2:16 the fudge factor is removed:

https://www.sciencechannel.com/tv-sh...iggest-blunder
SPACE'S DEEPEST SECRETS Einstein's "Biggest Blunder"

"A fudge factor is an ad hoc quantity introduced into a calculation, formula or model in order to make it fit observations or expectations. Examples include Einstein's Cosmological Constant..."
https://en.wikipedia.org/wiki/Fudge_factor

Can one add a fudge factor analogous to the cosmological constant to the Lorentz transformation equations? One cannot, and the reason is simple: Special relativity is deductive (even though a false postulate and an invalid argument spoiled it from the very beginning) and fudging is impossible by definition - one has no right to add anything that is not deducible from the postulates.

Nowadays, except for special relativity, theories and models in physics are empirical, non-deductive - they cannot be presented as a set of valid arguments built up logically from a small number of simple axioms (postulates). This makes them unfalsifiable a priori.

"By a theory I shall mean the deductive closure of a set of theoretical postulates together with an appropriate set of auxiliary hypotheses; that is, everything that can be deduced from this set." W. H. Newton-Smith, THE RATIONALITY OF SCIENCE, p. 199 http://cdn.preterhuman.net/texts/tho...%20science.pdf

Only deductive theories (models) can be falsified, either logically or experimentally. That is:

1. Arguments can be checked for validity.

2. The reductio-ad-absurdum procedure can be applied.

3. Showing, experimentally, that a postulate or a deduced consequence is false makes sense - the deductive structure allows one to interpret the falsehood in terms of the whole theory. (In the absence of a deductive structure any detected falsehood or absurdity remains insignificant - one can ignore it or "fix" it in some way, e.g. by introducing a fudge factor.)

The only alternative to deductivism is empiricism - models are essentially equivalent to the "empirical models" defined he

"The objective of curve fitting is to theoretically describe experimental data with a model (function or equation) and to find the parameters associated with this model. Models of primary importance to us are mechanistic models. Mechanistic models are specifically formulated to provide insight into a chemical, biological, or physical process that is thought to govern the phenomenon under study. Parameters derived from mechanistic models are quantitative estimates of real system properties (rate constants, dissociation constants, catalytic velocities etc.). It is important to distinguish mechanistic models from empirical models that are mathematical functions formulated to fit a particular curve but whose parameters do not necessarily correspond to a biological, chemical or physical property."
http://collum.chem.cornell.edu/docum...ve_Fitting.pdf

Pentcho Valev
  #2  
Old October 13th 17, 01:10 PM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default Why Einstein's General Relativity Predicts Nothing

Einstein did not believe in black holes so he saw no reason for general relativity to predict gravitational waves produced by black holes. If he had wanted, he would have implemented that prediction into the theory (empirical models can be made to predict anything):

Natalia Kiriushcheva: "What is shown on this picture? The equation on this page is what will be left from Einstein's equations of General Relativity (GR) after linearization. i.e. after a certain assumption is imposed: the gravitational field is considered weak (is it a correct assumption for two black holes?). Moreover, this equation is similar to the wave equation of the Maxwell theory that (after some additional manipulations) describes propagation of electromagnetic waves in the absence of sources (absence of any source, including a system of two black holes!). Einstein pointed out in this paper that its result is not general, it is valid only under assumption that the gravitational field is weak and only linear coordinate transformations (a linearized version of the general coordinate transformations of GR) can be applied to these (linearized) equations. Einstein also did not predict in this paper "that two celestial bodies in orbit will generate invisible ripples in spacetime that experts call gravitational waves", as BI claims. He was talking about "the system" that radiates energy, without specifying what kind of system it is."
https://gravityattraction.wordpress....s-involvement/

In order to be consistent with dark matter, general relativity needs four fudge factors:

"Verlinde's calculations fit the new study's observations without resorting to free parameters – essentially values that can be tweaked at will to make theory and observation match. By contrast, says Brouwer, conventional dark matter models need four free parameters to be adjusted to explain the data."
https://www.newscientist.com/article...f-dark-matter/

How many fudge factors LIGO conspirators needed to model the nonexistent gravitational waves is a deep mystery. In any case, conspirators knew that empirical models are garbage and faked the gravitational wave signals without using them:

The Nobel Committee for Physics: "While these waveforms provide a reasonable match, further important improvements are obtained using numerical methods that are very computationally intensive [23]. The analytical methods are crucial to producing the big library of template waveforms used by LIGO. While the waveforms produced in this way are necessary for determining the detailed properties of the objects involved, as well as identifying weak signals, they were not essential for the very first detection of GW150914. This was a model-independent detection of a gravitational-wave transient." https://www.nobelprize.org/nobel_pri...sprize2017.pdf

According to Rana Adhikari, professor of Physics at Caltech and a member of the LIGO team, LIGO conspirators have no preliminary knowledge about the signals. Adhikari declares: "the only thing that we really know is what we measure. And that's the mantra of the true empirical person":

Rana Adhikari: "You split it in two and you send it in two separate directions, and then when the waves come back, they interfere with each other. And you look at differences in that interference to tell you the difference in how long it took for one beam to go one way, and the other beam to go the other way. The way I said it was really careful there because there's a lot of confusion about the idea of, these are waves and space is bending, and everything is shrinking, and how come the light's not shrinking, and so on. We don't really know. There's no real difference between the ideas of space and time warping. It could be space warping or time warping but the only thing that we really know is what we measure. And that's the mantra of the true empirical person. We sent out the light and the light comes back and interferes, and the pattern changes. And that tells us something about effectively the delay that the light's on. And it could be that the space-time curved so that the light took longer to get there. But you could also imagine that there was a change in the time in one path as opposed to the other instead of the space but it's a mixture of space and time. So it sort of depends on your viewpoint."
https://blog.ycombinator.com/the-tec...ikari-of-ligo/

Pentcho Valev
  #3  
Old October 13th 17, 06:35 PM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default Why Einstein's General Relativity Predicts Nothing

Formally, Einstein's general relativity correctly predicts the gravitational redshift measured in the Pound-Rebka experiment. Nevertheless the prediction is invalid and misleading. General relativity teaches that the gravitational redshift arises from the so-called gravitational time dilation but, as Banesh Hoffmann explains, that is not the case:

Banesh Hoffmann: "In an accelerated sky laboratory, and therefore also in the corresponding earth laboratory, the frequence of arrival of light pulses is lower than the ticking rate of the upper clocks even though all the clocks go at the same rate. [...] As a result the experimenter at the ceiling of the sky laboratory will see with his own eyes that the floor clock is going at a slower rate than the ceiling clock - even though, as I have stressed, both are going at the same rate. [...] The gravitational red shift does not arise from changes in the intrinsic rates of clocks. It arises from what befalls light signals as they traverse space and time in the presence of gravitation." http://www.amazon.com/Relativity-Its.../dp/0486406768

What "befalls light signals as they traverse space and time in the presence of gravitation"? They accelerate of course, like ordinary falling bodies (in the gravitational field of the Earth the acceleration of falling photons is g), as predicted by Newton's emission theory of light and in violation of Einstein's relativity. The Pound-Rebka experiment demonstrated that the velocity difference (acceleration) of photons is "identical to that which a material object would acquire in free fall":

R. V. Pound and J. L. Snider, Effect of Gravity on Gamma Radiation: "It is not our purpose here to enter into the many-sided discussion of the relationship between the effect under study and general relativity or energy conservation. It is to be noted that no strictly relativistic concepts are involved and the description of the effect as an "apparent weight" of photons is suggestive. The velocity difference predicted is identical to that which a material object would acquire in free fall for a time equal to the time of flight."
http://virgo.lal.in2p3.fr/NPAC/relat...iers/pound.pdf

That the speed of falling light varies like the speed of ordinary falling bodies is so obvious that many Einsteinians confirm the fact and so inadvertently disprove Einstein's relativity:

"If we accept the principle of equivalence, we must also accept that light falls in a gravitational field with the same acceleration as material bodies." http://sethi.lamar.edu/bahrim-cristi...t-lens_PPT.pdf

University of Illinois at Urbana-Champaign: "Consider a falling object. ITS SPEED INCREASES AS IT IS FALLING. Hence, if we were to associate a frequency with that object the frequency should increase accordingly as it falls to earth. Because of the equivalence between gravitational and inertial mass, WE SHOULD OBSERVE THE SAME EFFECT FOR LIGHT. So lets shine a light beam from the top of a very tall building. If we can measure the frequency shift as the light beam descends the building, we should be able to discern how gravity affects a falling light beam. This was done by Pound and Rebka in 1960. They shone a light from the top of the Jefferson tower at Harvard and measured the frequency shift. The frequency shift was tiny but in agreement with the theoretical prediction. Consider a light beam that is travelling away from a gravitational field. Its frequency should shift to lower values. This is known as the gravitational red shift of light."
https://courses.physics.illinois.edu...re13/L13r.html

Albert Einstein Institute: "One of the three classical tests for general relativity is the gravitational redshift of light or other forms of electromagnetic radiation. However, in contrast to the other two tests - the gravitational deflection of light and the relativistic perihelion shift -, you do not need general relativity to derive the correct prediction for the gravitational redshift. A combination of Newtonian gravity, a particle theory of light, and the weak equivalence principle (gravitating mass equals inertial mass) suffices. [...] The gravitational redshift was first measured on earth in 1960-65 by Pound, Rebka, and Snider at Harvard University..."
http://www.einstein-online.info/spot...t_white_dwarfs

Pentcho Valev
  #4  
Old October 14th 17, 12:37 PM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default Why Einstein's General Relativity Predicts Nothing

Einstein's general relativity was not deduced from postulates. It is a not-even-wrong empirical concoction - a malleable combination of ad hoc equations and fudge factors allowing Einsteinians to predict anything they want:

https://www.quora.com/What-are-the-p...ral-Relativity
What are the postulates of General Relativity? Alexander Poltorak, Adjunct Professor of Physics at the CCNY: "In 2005 I started writing a paper, "The Four Cornerstones of General Relativity on which it doesn't Rest." Unfortunately, I never had a chance to finish it. The idea behind that unfinished article was this: there are four principles that are often described as "postulates" of General Relativity:

1. Principle of general relativity

2. Principle of general covariance

3. Equivalence principle

4. Mach principle

The truth is, however, that General Relativity is not really based on any of these "postulates" although, without a doubt, they played important heuristic roles in the development of the theory." [END OF QUOTATION]

Sometimes the most insane Einsteinians call Einstein's 1915 final ad hoc equations "postulates":

http://math.stanford.edu/~schoen/tri.../lecture_3.pdf
"Postulates of General Relativity
Postulate 1: A spacetime (M^4, g) is a Riemannian 4-manifold M^4 with a Lorentzian metric g.
Postulate 2: A test mass beginning at rest moves along a timelike geodesic. (Geodesic equation) ...
Postulate 3: Einstein equation is satisfied. (Einstein equation) ..." [END OF QUOTATION]

The parameters of an empirical (non-deductive) model do not correspond to physical properties of the system - they are just fudge factors. Here is the most idiotic fudge factor in Einstein's general relativity:

The miraculous gravitational time dilation fabricated by Einstein in 1911 and the gravitational redshift are only compatible if light in a gravitational field behaves in an absurd way: Its speed DECREASES as the light falls towards the source of gravity - the acceleration of falling photons is NEGATIVE (in the gravitational field of the Earth it is -2g). The idiotic negative acceleration of photons, -2g, was a fudge factor Einstein and his mathematical friends introduced in 1915:

https://archive.is/wn4PV
Albert Einstein: "Second, this consequence shows that the law of the constancy of the speed of light no longer holds, according to the general theory of relativity, in spaces that have gravitational fields. As a simple geometric consideration shows, the curvature of light rays occurs only in spaces where the speed of light is spatially variable."

https://www.youtube.com/watch?v=FJ2SVPahBzg
"The change in speed of light with change in height is dc/dh=g/c."

http://www.physlink.com/Education/AskExperts/ae13.cfm
"Contrary to intuition, the speed of light (properly defined) decreases as the black hole is approached."

http://www.speed-light.info/speed_of_light_variable.htm
"Einstein wrote this paper in 1911 in German. [...] ...you will find in section 3 of that paper Einstein's derivation of the variable speed of light in a gravitational potential, eqn (3). The result is: c'=c0(1+φ/c^2) where φ is the gravitational potential relative to the point where the speed of light c0 is measured. Simply put: Light appears to travel slower in stronger gravitational fields (near bigger mass). [...] You can find a more sophisticated derivation later by Einstein (1955) from the full theory of general relativity in the weak field approximation. [...] Namely the 1955 approximation shows a variation in km/sec twice as much as first predicted in 1911."

http://www.mathpages.com/rr/s6-01/6-01.htm
"Specifically, Einstein wrote in 1911 that the speed of light at a place with the gravitational potential φ would be c(1+φ/c^2), where c is the nominal speed of light in the absence of gravity. In geometrical units we define c=1, so Einstein's 1911 formula can be written simply as c'=1+φ. However, this formula for the speed of light (not to mention this whole approach to gravity) turned out to be incorrect, as Einstein realized during the years leading up to 1915 and the completion of the general theory. [...] ...we have c_r =1+2φ, which corresponds to Einstein's 1911 equation, except that we have a factor of 2 instead of 1 on the potential term."

Einsteinians have no idea why the speed of light should behave in such an idiotic way and avoid the topic. The above relevant references are perhaps the only ones that can be found on the Internet.

Pentcho Valev
 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
How Einstein's General Relativity Predicts Pentcho Valev Astronomy Misc 0 August 23rd 17 08:16 AM
Einstein's General Relativity Is Not Even Wrong Pentcho Valev Astronomy Misc 0 June 28th 16 09:01 AM
Actually Einstein's Relativity Predicts No Time Travel Pentcho Valev Astronomy Misc 3 June 17th 16 10:41 AM
Einstein's Relativity Predicts No Time Travel Pentcho Valev Astronomy Misc 1 April 6th 16 12:31 AM
Disproving Einstein's General Relativity (GR) Pentcho Valev Astronomy Misc 1 September 2nd 07 12:37 PM


All times are GMT +1. The time now is 12:56 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.