A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily Report #4616



 
 
Thread Tools Display Modes
  #1  
Old May 22nd 08, 03:15 PM posted to sci.astro.hubble
Cooper, Joe
external usenet poster
 
Posts: 568
Default Daily Report #4616

HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

DAILY REPORT****** # 4616

PERIOD COVERED: 5am May 21 - 5am May 22, 2008 (DOY
142/0900z-143/0900z)

OBSERVATIONS SCHEDULED

FGS 11210

The Architecture of Exoplanetary Systems

Are all planetary systems coplanar? Concordance cosmogony makes that
prediction. It is, however, a prediction of extrasolar planetary
system architecture as yet untested by direct observation for main
sequence stars other than the Sun. To provide such a test, we propose
to carry out FGS astrometric studies on four stars hosting seven
companions. Our understanding of the planet formation process will
grow as we match not only system architecture, but formed planet mass
and true distance from the primary with host star characteristics for
a wide variety of host stars and exoplanet masses. We propose that a
series of FGS astrometric observations with demonstrated 1 millisecond
of arc per-observation precision can establish the degree of
coplanarity and component true masses for four extrasolar systems: HD
202206 {brown dwarf+planet}; HD 128311 {planet+planet}, HD 160691 = mu
Arae {planet+planet}, and HD 222404AB = gamma Cephei {planet+star}. In
each case the companion is identified as such by assuming that the
minimum mass is the actual mass. For the last target, a known stellar
binary system, the companion orbit is stable only if coplanar with the
AB binary orbit.

NIC1/NIC2/NIC3 8795

NICMOS Post-SAA calibration - CR Persistence Part 6

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be
non-standard reference files available to users with a USEAFTER
date/time mark. The keyword 'USEAFTER=date/time' will also be added to
the header of each POST-SAA DARK frame. The keyword must be populated
with the time, in addition to the date, because HST crosses the SAA ~8
times per day so each POST-SAA DARK will need to have the appropriate
time specified, for users to identify the ones they need. Both the raw
and processed images will be archived as POST-SAA DARKSs. Generally we
expect that all NICMOS science/calibration observations started within
50 minutes of leaving an SAA will need such maps to remove the CR
persistence from the science images. Each observation will need its
own CRMAP, as different SAA passages leave different imprints on the
NICMOS detectors.

NIC3 11120

A Paschen-Alpha Study of Massive Stars and the ISM in the Galactic
Center

The Galactic center (GC) is a unique site for a detailed study of a
multitude of complex astrophysical phenomena, which may be common to
nuclear regions of many galaxies. Observable at resolutions
unapproachable in other galaxies, the GC provides an unparalleled
opportunity to improve our understanding of the interrelationships of
massive stars, young stellar clusters, warm and hot ionized gases,
molecular clouds, large scale magnetic fields, and black holes. We
propose the first large-scale hydrogen Paschen alpha line survey of
the GC using NICMOS on the Hubble Space Telescope. This survey will
lead to a high resolution and high sensitivity map of the Paschen
alpha line emission in addition to a map of foreground extinction,
made by comparing Paschen alpha to radio emission. This survey of the
inner 75 pc of the Galaxy will provide an unprecedented and complete
search for sites of massive star formation. In particular, we will be
able to (1) uncover the distribution of young massive stars in this
region, (2) locate the surfaces of adjacent molecular clouds, (3)
determine important physical parameters of the ionized gas, (4)
identify compact and ultra-compact HII regions throughout the GC. When
combined with existing Chandra and Spitzer surveys as well as a wealth
of other multi-wavelength observations, the results will allow us to
address such questions as where and how massive stars form, how
stellar clusters are disrupted, how massive stars shape and heat the
surrounding medium, and how various phases of this medium are
interspersed.

NIC3 11195

Morphologies of the Most Extreme High-Redshift Mid-IR-luminous
Galaxies II: The `Bump' Sources

The formative phase of some of the most massive galaxies may be
extremely luminous, characterized by intense star- and AGN-formation.
Till now, few such galaxies have been unambiguously identified at high
redshift, and thus far we have been restricted to studying the
low-redshift ultraluminous infrared galaxies as possible analogs. We
have recently discovered a sample of objects which may indeed
represent this early phase in galaxy formation, and are undertaking an
extensive multiwavelength study of this population. These objects are
optically extremely faint {R26} but nevertheless bright at
mid-infrared wavelengths {F[24um] 0.5 mJy}. Mid-infrared
spectroscopy with Spitzer/IRS reveals that they have redshifts z~2,
implying luminosities ~1E13 Lsun. Their mid-IR SEDs fall into two
broad, perhaps overlapping, categories. Sources with brighter F[24um]
exhibit power-law SEDs and SiO absorption features in their mid-IR
spectra characteristic of AGN, whereas those with fainter F[24um] show
a "bump" characteristic of the redshifted 1.6um peak from a stellar
population, and PAH emission characteristic of starformation. We have
begun obtaining HST images of the brighter sources in Cycle 15 to
obtain identifications and determine kpc-scale morphologies for these
galaxies. Here, we aim to target the second class {the "bump" sources}
with the goal of determining if these constitute morphologically
different objects, or simply a "low-AGN" state of the brighter class.
The proposed observations will help us determine whether these objects
are merging systems, massive obscured starbursts {with obscuration on
kpc scales!} or very reddened {locally obscured} AGN hosted by
intrinsically low-luminosity galaxies.

NIC3 11334

NICMOS Cycle 16 Spectrophotometry

Observation of the three primary WD flux standards must be repeated to
refine the NICMOS absolute calibration and monitor for sensitivity
degradation. So far, NICMOS grism spectrophotometry is available for
only ~16 stars with good STIS spectra at shorter wavelengths. There
are more in the HST CALSPEC standard star data base with good STIS
spectra that would also become precise IR standards with NICMOS
absolute SED measurements. Monitoring the crucial three very red stars
(M, L, T) for variability and better S/N in the IR. Apparent
variability was discovered at shorter wavelengths during the ACS
cross-calibration work that revealed a ~2% discrepancy of the cool
star fluxes with respect to the hot primary WD standards. About a
third of these stars are bright enough to do in one orbit, the rest
require 2 orbits.

WFPC2 11227

The orbital period for an ultraluminous X-ray source in NGC1313

The ultraluminous X-ray sources {ULXs} are extragalactic point sources
with luminosities that exceed the Eddington luminosity for
conventional stellar-mass black holes by factors of 10 - 100. It has
been hotly debated whether the ULXs are just common stellar-mass black
hole sources with beamed emission or whether they are sub-Eddington
sources that are powered by the long-sought intermediate mass black
holes {IMBH}. To firmly decide this question, one must obtain
dynamical mass measurements through photometric and spectroscopic
monitoring of the secondaries of these system. The crucial first step
is to establish the orbital period of a ULX, and arguably the best way
to achieve this goal is by monitoring its ellipsoidal light curve. The
extreme ULX NGC1313 X-2 provides an outstanding target for an orbital
period determination because its relatively bright optical counterpart
{V = 23.5} showed a 15% variation between two HST observations
separated by three months. This level of variability is consistent
with that expected for a tidally distorted secondary star. Here we
propose a set of 20 imaging observations with HST/WFPC2 to define the
orbital period. This would be the first photometric measurement of the
orbital period of a ULX binary. Subsequently, we will propose to
obtain spectroscopic observations to obtain its radial velocity
amplitude and thereby a dynamical estimate of its mass.

WFPC2 11235

HST NICMOS Survey of the Nuclear Regions of Luminous Infrared Galaxies
in the Local Universe

At luminosities above 10^11.4 L_sun, the space density of far-infrared
selected galaxies exceeds that of optically selected galaxies. These
`luminous infrared galaxies' {LIRGs} are primarily interacting or
merging disk galaxies undergoing enhanced star formation and Active
Galactic Nuclei {AGN} activity, possibly triggered as the objects
transform into massive S0 and elliptical merger remnants. We propose
NICMOS NIC2 imaging of the nuclear regions of a complete sample of 88
L_IR 10^11.4 L_sun luminous infrared galaxies in the IRAS Revised
Bright Galaxy Sample {RBGS: i.e., 60 micron flux density 5.24 Jy}.
This sample is ideal not only in its completeness and sample size, but
also in the proximity and brightness of the galaxies. The superb
sensitivity and resolution of NICMOS NIC2 on HST enables a unique
opportunity to study the detailed structure of the nuclear regions,
where dust obscuration may mask star clusters, AGN and additional
nuclei from optical view, with a resolution significantly higher than
possible with Spitzer IRAC. This survey thus provides a crucial
component to our study of the dynamics and evolution of IR galaxies
presently underway with Wide-Field, HST ACS/WFC and Spitzer IRAC
observations of these 88 galaxies. Imaging will be done with the F160W
filter {H-band} to examine as a function of both luminosity and merger
stage {i} the luminosity and distribution of embedded star clusters,
{ii} the presence of optically obscured AGN and nuclei, {iii} the
correlation between the distribution of 1.6 micron emission and the
mid- IR emission as detected by Spitzer IRAC, {iv} the evidence of
bars or bridges that may funnel fuel into the nuclear region, and {v}
the ages of star clusters for which photometry is available via
ACS/WFC observations. The NICMOS data, combined with the HST ACS,
Spitzer, and GALEX observations of this sample, will result in the
most comprehensive study of merging and interacting galaxies to date.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.)

HSTARS: (None)

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)

*********************** SCHEDULED***** SUCCESSFUL

FGS GSacq************** 11***************** 11
FGS REacq************** 03***************** 03
OBAD with Maneuver **** 28***************** 28

SIGNIFICANT EVENTS: (None)


 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Daily Report #4390 Cooper, Joe Hubble 0 June 25th 07 02:15 PM
Daily Report # 4363 Cooper, Joe Hubble 0 May 16th 07 04:04 PM
Daily Report # 4362 Cooper, Joe Hubble 0 May 15th 07 04:21 PM
Daily Report [email protected] Hubble 0 October 29th 04 04:59 PM
HST Daily Report 131 George Barbehenn Hubble 0 May 11th 04 02:48 PM


All times are GMT +1. The time now is 09:03 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.