A Space & astronomy forum. SpaceBanter.com

If this is your first visit, be sure to check out the FAQ by clicking the link above. You may have to register before you can post: click the register link above to proceed. To start viewing messages, select the forum that you want to visit from the selection below.

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily Report #5181



 
 
Thread Tools Display Modes
  #1  
Old September 15th 10, 07:05 PM posted to sci.astro.hubble
Bassford, Lynn
external usenet poster
 
Posts: 44
Default Daily Report #5181

HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science

DAILY REPORT #5181

PERIOD COVERED: 5am September 14 - 5am September 15, 2010 (DOY 257/09:00z-258/09:00z)

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.)

HSTARS: (None)


COMPLETED OPS REQUEST:

18917-0 - Set STIS Event Flags 2 and 3 to inhibit further MAMA ops @
257/18:59z


COMPLETED OPS NOTES: (None)


SCHEDULED SUCCESSFUL
FGS GSAcq 9 9
FGS REAcq 6 6
OBAD with Maneuver 5 5


SIGNIFICANT EVENTS:

Ops Request 18917-0 at approximately 257/19:00 UTC, set the STIS event
flags 2 and 3 in the NSSC-1 to prevent MAMA Low Voltage from being
enabled.


OBSERVATIONS SCHEDULED:

ACS/WFC 12209

A Strong Lensing Measurement of the Evolution of Mass Structure in
Giant Elliptical Galaxies

The structure and evolution of giant elliptical galaxies provide key
quantitative tests for the theory of hierarchical galaxy formation in
a cold dark matter dominated universe. Strong gravitational lensing
provides the only direct means for the measurement of individual
elliptical galaxy masses beyond the local universe, but there are
currently no large and homogeneous samples of strong lens galaxies at
significant cosmological look-back time. Hence, an accurate and
unambiguous measurement of the evolution of the mass-density structure
of elliptical galaxies has until now been impossible. Using
spectroscopic data from the recently initiated Baryon Oscillation
Spectroscopic Survey (BOSS) of luminous elliptical galaxies at
redshifts from approximately 0.4 to 0.7, we have identified a large
sample of high-probability strong gravitational lens candidates at
significant cosmological look-back time, based on the detection of
emission-line features from more distant galaxies along the same lines
of sight as the target ellipticals. We propose to observe 45 of these
systems with the ACS-WFC in order to confirm the incidence of lensing
and to measure the masses of the lens galaxies. We will complement
these lensing mass measurements with stellar velocity dispersions from
ground-based follow-up spectroscopy. In combination with similar data
from the Sloan Lens ACS (SLACS) Survey at lower redshifts, we will
directly measure the cosmic evolution of the ratio between lensing
mass and dynamical mass, to reveal the structural explanation for the
observed size evolution of elliptical galaxies (at high mass). We will
also measure the evolution of the logarithmic mass-density profile of
massive ellipticals, which is sensitive to the details of the merging
histories through which they are assembled. Finally, we will use our
lensing mass-to-light measurements to translate the BOSS galaxy
luminosity function into a mass function, and determine its evolution
in combination with data from the original Sloan Digital Sky Survey.

ACS/WFC 12210

SLACS for the Masses: Extending Strong Lensing to Lower Masses and
Smaller Radii

Strong gravitational lensing provides the most accurate possible
measurement of mass in the central regions of early-type galaxies
(ETGs). We propose to continue the highly productive Sloan Lens ACS
(SLACS) Survey for strong gravitational lens galaxies by observing a
substantial fraction of 135 new ETG gravitational-lens candidates with
HST-ACS WFC F814W Snapshot imaging. The proposed target sample has
been selected from the seventh and final data release of the Sloan
Digital Sky Survey, and is designed to complement the distribution of
previously confirmed SLACS lenses in lens-galaxy mass and in the ratio
of Einstein radius to optical half-light radius. The observations we
propose will lead to a combined SLACS sample covering nearly two
decades in mass, with dense mapping of enclosed mass as a function of
radius out to the half-light radius and beyond. With this longer mass
baseline, we will extend our lensing and dynamical analysis of the
mass structure and scaling relations of ETGs to galaxies of
significantly lower mass, and directly test for a transition in
structural and dark-matter content trends at intermediate galaxy mass.
The broader mass coverage will also enable us to make a direct
connection to the structure of well-studied nearby ETGs as deduced
from dynamical modeling of their line-of-sight velocity distribution
fields. Finally, the combined sample will allow a more conclusive test
of the current SLACS result that the intrinsic scatter in ETG
mass-density structure is not significantly correlated with any other
galaxy observables. The final SLACS sample at the conclusion of this
program will comprise approximately 130 lenses with known foreground
and background redshifts, and is likely to be the largest confirmed
sample of strong-lens galaxies for many years to come.

COS/NUV/FUV 11741

Probing Warm-Hot Intergalactic Gas at 0.5 z 1.3 with a Blind
Survey for O VI, Ne VIII, Mg X, and Si XII Absorption Systems

Currently we can only account for half of the baryons (or less)
expected to be found in the nearby universe based on D/H and CMB
observations. This "missing baryons problem" is one of the
highest-priority challenges in observational extragalatic astronomy.
Cosmological simulations suggest that the baryons are hidden in
low-density, shock-heated intergalactic gas in the log T = 5 - 7
range, but intensive UV and X-ray surveys using O VI, O VII, and O
VIII absorption lines have not yet confirmed this prediction. We
propose to use COS to carry out a sensitive survey for Ne VIII and Mg
X absorption in the spectra of nine QSOs at z(QSO) 0.89. For the
three highest-redshift QSOs, we will also search for Si XII. This
survey will provide more robust constraints on the quantity of baryons
in warm-hot intergalactic gas at 0.5 z 1.3, and the data will
provide rich constraints on the metal enrichment, physical conditions,
and nature of a wide variety of QSO absorbers in addition to the
warm-hot systems. By comparing the results to other surveys at lower
redshifts (with STIS, FUSE, and from the COS GTO programs), the
project will also enable the first study of how these absorbers evolve
with redshift at z 1. By combining the program with follow-up galaxy
redshift surveys, we will also push the study of galaxy-absorber
relationships to higher redshifts, with an emphasis on the
distribution of the WHIM with respect to the large-scale matter
distribution of the universe.

FGS 12316

HST/FGS Astrometric Search for Young Planets Around Beta Pic and AU
Mic

AU Mic is a nearby Vega-type debris disk stars. Its disk system has
been spatially resolved in exquisite detail, predominantly via the ACS
coronagraph and WFPC-2 cameras onboard HST. These images exhibit a
wealth of morphological features which provide compelling indirect
evidence that AU Mic likely harbors short-period planetary body(ies).
We propose to use the superlative astrometric capabilities of HST/FGS
to directly detect these planets, hence provide the first direct
planet detection in a Vega-type system whose disk has been imaged at
high spatial resolution.

S/C 12046

COS FUV DCE Memory Dump

Whenever the FUV detector high voltage is on, count rate and current
draw information is collected, monitored, and saved to DCE memory.
Every 10 msec the detector samples the currents from the HV power
supplies (HVIA, HVIB) and the AUX power supply (AUXI). The last 1000
samples are saved in memory, along with a histogram of the number of
occurrences of each current value.

In the case of a HV transient (known as a "crackle" on FUSE), where
one of these currents exceeds a preset threshold for a persistence
time, the HV will shut down, and the DCE memory will be dumped and
examined as part of the recovery procedure. However, if the current
exceeds the threshold for less than the persistence time (a
"mini-crackle" in FUSE parlance), there is no way to know without
dumping DCE memory. By dumping and examining the histograms regularly,
we will be able to monitor any changes in the rate of "mini-crackles"
and thus learn something about the state of the detector.

STIS/CCD 11845

CCD Dark Monitor Part 2

Monitor the darks for the STIS CCD.

STIS/CCD 11847

CCD Bias Monitor-Part 2

Monitor the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1,
and 1x1 at gain = 4, to build up high-S/N superbiases and track the
evolution of hot columns.

STIS/CCD 11999

JWST Calibration from a Consistent Absolute Calibration of Spitzer &
Hubble

Recently, Gordon, Bohlin, et al. submitted a successful Spitzer
proposal for cross calibration of HST and Spitzer. The
cross-calibration targets are stars in three categories: WDs, A-stars,
and G-stars. Traditionally, IR flux standards are extrapolations of
stellar models that are tied to absolute fluxes at shorter
wavelengths. HST absolute flux standards are among the best available
with a solid basis that uses pure hydrogen models of hot WD stars for
the SED slopes and is tied to Vega at 5556A via precise Landolt V-band
photometry. Consistently matching models to our three categories of
HST observations along with Spitzer photometry and the few existing
absolute IR flux determinations will provide a solid basis for JWST
flux calibration over its 0.8-30micron range. The goal of this
proposal is to complete the HST observations of the set of HST/Spitzer
cross-calibration stars. Using a variety of standard stars with three
different spectral types will ensure that the final calibration is not
significantly affected by systematic uncertainties.

WFC3/ACS/IR 11563

Galaxies at z~7-10 in the Reionization Epoch: Luminosity Functions to
0.2L* from Deep IR Imaging of the HUDF and HUDF05 Fields

The first generations of galaxies were assembled around redshifts
z~7-10+, just 500-800 Myr after recombination, in the heart of the
reionization of the universe. We know very little about galaxies in
this period. Despite great effort with HST and other telescopes, less
than ~15 galaxies have been reliably detected so far at z7,
contrasting with the ~1000 galaxies detected to date at z~6, just
200-400 Myr later, near the end of the reionization epoch. WFC3 IR can
dramatically change this situation, enabling derivation of the galaxy
luminosity function and its shape at z~7-8 to well below L*,
measurement of the UV luminosity density at z~7-8 and z~8-9, and
estimates of the contribution of galaxies to reionization at these
epochs, as well as characterization of their properties (sizes,
structure, colors). A quantitative leap in our understanding of early
galaxies, and the timescales of their buildup, requires a total sample
of ~100 galaxies at z~7-8 to ~29 AB mag. We can achieve this with 192
WFC3 IR orbits on three disjoint fields (minimizing cosmic variance):
the HUDF and the two nearby deep fields of the HUDF05. Our program
uses three WFC3 IR filters, and leverages over 600 orbits of existing
ACS data, to identify, with low contamination, a large sample of over
100 objects at z~7-8, a very useful sample of ~23 at z~8-9, and limits
at z~10. By careful placement of the WFC3 IR and parallel ACS
pointings, we also enhance the optical ACS imaging on the HUDF and a
HUDF05 field. We stress (1) the need to go deep, which is paramount to
define L*, the shape, and the slope alpha of the luminosity function
(LF) at these high redshifts; and (2) the far superior performance of
our strategy, compared with the use of strong lensing clusters, in
detecting significant samples of faint z~7-8 galaxies to derive their
luminosity function and UV ionizing flux. Our recent z~7.4 NICMOS
results show that wide-area IR surveys, even of GOODS-like depth,
simply do not reach faint enough at z~7-9 to meet the LF and UV flux
objectives. In the spirit of the HDF and the HUDF, we will waive any
proprietary period, and will also deliver the reduced data to STScI.
The proposed data will provide a Legacy resource of great value for a
wide range of archival science investigations of galaxies at redshifts
z~2- 9. The data are likely to remain the deepest IR/optical images
until JWST is launched, and will provide sources for spectroscopic
follow up by JWST, ALMA and EVLA.

WFC3/IR/S/C 11929

IR Dark Current Monitor

Analyses of ground test data showed that dark current signals are more
reliably removed from science data using darks taken with the same
exposure sequences as the science data, than with a single dark
current image scaled by desired exposure time. Therefore, dark current
images must be collected using all sample sequences that will be used
in science observations. These observations will be used to monitor
changes in the dark current of the WFC3-IR channel on a day-to-day
basis, and to build calibration dark current ramps for each of the
sample sequences to be used by Gos in Cycle 17. For each sample
sequence/array size combination, a median ramp will be created and
delivered to the calibration database system (CDBS).

WFC3/UV 12324

The Temperature Profiles of Quasar Accretion Disks

We can now routinely measure the size of quasar accretion disks using
gravitational microlensing of lensed quasars. At optical wavelengths
we observe a size and scaling with black hole mass roughly consistent
with thin disk theory but the sizes are larger than expected from the
observed optical fluxes. One solution would be to use a flatter
temperature profile, which we can study by measuring the wavelength
dependence of the disk size over the largest possible wavelength
baseline. Thus, to understand the size discrepancy and to probe closer
to the inner edge of the disk we need to extend our measurements to UV
wavelengths, and this can only be done with HST. For example, in the
UV we should see significant changes in the optical/UV size ratio with
black hole mass. We propose monitoring 5 lenses spanning a broad range
of black hole masses with well-sampled ground based light curves,
optical disk size measurements and known GALEX UV fluxes during Cycles
17 and 18 to expand from our current sample of two lenses. We would
obtain 5 observations of each target in each Cycle, similar to our
successful strategy for the first two targets.

WFC3/UVIS 11905

WFC3 UVIS CCD Daily Monitor

The behavior of the WFC3 UVIS CCD will be monitored daily with a set
of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K
subarray biases are acquired at less frequent intervals throughout the
cycle to support subarray science observations. The internals from
this proposal, along with those from the anneal procedure (Proposal
11909), will be used to generate the necessary superbias and superdark
reference files for the calibration pipeline (CDBS).

WFC3/UVIS/IR 11702

Search for Very High-z Galaxies with WFC3 Pure Parallel

WFC3 will provide an unprecedented probe to the early universe beyond
the current redshift frontier. Here we propose a pure parallel program
using this new instrument to search for Lyman-break galaxies at
6.5z8.8 and to probe the epoch of reionization, a hallmark event in
the history of the early universe. We request 200 orbits, spreading
over 30 ~ 50 high Galactic latitude visits (|b|20deg) that last for 4
orbits and longer, resulting a total survey area of about 140~230
square arcminute. Based on our understanding of the new HST parallel
observation scheduling process, we believe that the total number of
long-duration pure parallel visits in Cycle 17 should be sufficient to
accommodate our program. We waive all proprietary rights to our data,
and will also make the enhanced data products public in a timely
manner.

(1) We will use both the UVIS and the IR channels, and do not need to
seek optical data from elsewhere.

(2) Our program will likely triple the size of the probable candidate
samples at z~7 and z~8, and will complement other targeted programs
aiming at the similar redshift range.

(3) Being a pure parallel program, our survey will only make very
limited demand on the scarce HST resources. More importantly, as the
pure parallel pointings will be at random sight-lines, our program
will be least affected by the bias due to the large scale structure
("cosmic variance").

(4) We aim at the most luminous LBG population, and will address the
bright-end of the luminosity function at z~8 and z~7. We will
constrain the value of L* in particular, which is critical for
understanding the star formation process and the stellar mass assembly
history in the first few hundred million years of the universe.

(5) The candidates from our survey, most of which will be the
brightest ones that any surveys would be able to find, will have the
best chance to be spectroscopically confirmed at the current 8--10m
telescopes.

(6) We will also find a large number of extremely red, old galaxies at
intermediate redshifts, and the fine spatial resolution offered by the
WFC3 will enable us constrain their formation history based on the
study of their morphology, and hence shed light on their connection to
the very early galaxies in the universe.

Ads
 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Daily Report Cooper, Joe Hubble 0 December 22nd 08 06:17 PM
Daily Report #4566 Cooper, Joe Hubble 0 March 13th 08 03:53 PM
WINDOWS VISTA FINAL, OFFICE 2007 ENTERPRISE, ARCSOFT SHOWBIZ DVD V2.2.2.78, MITCHELL GLASSMATE V5.2, other 2006-11-19 new programs CDs 5181 - 5199, and new games CDs 1941 - 1944 kashumoto_tokugawa Space Station 0 November 20th 06 02:47 PM
Daily Report [email protected] Hubble 0 October 29th 04 04:59 PM
HST Daily Report 131 George Barbehenn Hubble 0 May 11th 04 02:48 PM


All times are GMT +1. The time now is 09:13 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2019, Jelsoft Enterprises Ltd.
Copyright 2004-2019 SpaceBanter.com.
The comments are property of their posters.