A Space & astronomy forum. SpaceBanter.com

If this is your first visit, be sure to check out the FAQ by clicking the link above. You may have to register before you can post: click the register link above to proceed. To start viewing messages, select the forum that you want to visit from the selection below.

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily Report #5186



 
 
Thread Tools Display Modes
  #1  
Old September 22nd 10, 06:43 PM posted to sci.astro.hubble
Cooper, Joe
external usenet poster
 
Posts: 568
Default Daily Report #5186

HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science

DAILY REPORT #5186

PERIOD COVERED: 5am September 21 - 5am September 22, 2010 (DOY 264/09:00z-265/09:00z)

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.)

HSTARS FOR DOY 251 & 252:

12422 - GSAcq(2,1,1) at 252/07:46:00z required two attempts for CT-DV
on FGS2.
12423 - GSAcq(1,2,1) at 251/06:57:37z required multiple attempts to
achieve CT-DV.


COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)

SCHEDULED SUCCESSFUL
FGS GSAcq 6 6
FGS REAcq 7 7
OBAD with Maneuver 8 8

SIGNIFICANT EVENTS: (None)


OBSERVATIONS SCHEDULED:

COS/FUV 11619

Definitive ISM Abundances through Low-mass X-ray Binaries as Lighthouses

We propose observations of the UV spectra of two low-mass X-ray
binaries (Sco X-1 and Cyg X-2) with existing Chandra X-Ray Observatory
(CXO) data. From the X-ray data we will measure total
(phase-independent) column densities of O, Ne, and Fe. From the UV
data we will determine gas-phase column densities of H and O. The data
in conjunction will allow us to make unique measurements of the total
interstellar abundances of oxygen, neon, and iron, and direct
measurements of the dust-phase abundances of O and Fe.

COS/NUV 11900

NUV Internal/External Wavelength Scale Monitor

This program monitors the offsets between the wavelength scale set by
the internal wavecal versus that defined by absorption lines in
external targets. This is accomplished by observing two external
radial velocity standard targets: HD187691 with G225M and G285M and
HD6655 with G285M and G230L. The two standard targets have little flux
in the wavelength range covered by G185M and so Feige 48 (sdO) is
observed with this grating. Both Feige 48 and HD6655 are also observed
in SMOV. The cenwaves observed in this program are a subset of the
ones used during Cycle 17. Observing all cenwaves would require a
considerably larger number of orbits. Constraints on scheduling of
each target are placed so that each target is observed once every ~2-3
months. Observing the three targets every month would also require a
considerably larger number of orbits.

COS/NUV/FUV 11598

How Galaxies Acquire their Gas: A Map of Multiphase Accretion and
Feedback in Gaseous Galaxy Halos

We propose to address two of the biggest open questions in galaxy
formation - how galaxies acquire their gas and how they return it to
the IGM - with a concentrated COS survey of diffuse multiphase gas in
the halos of SDSS galaxies at z = 0.15 - 0.35. Our chief science goal
is to establish a basic set of observational facts about the physical
state, metallicity, and kinematics of halo gas, including the sky
covering fraction of hot and cold material, the metallicity of infall
and outflow, and correlations with galaxy stellar mass, type, and
color - all as a function of impact parameter from 10 - 150 kpc.
Theory suggests that the bimodality of galaxy colors, the shape of the
luminosity function, and the mass-metallicity relation are all
influenced at a fundamental level by accretion and feedback, yet these
gas processes are poorly understood and cannot be predicted robustly
from first principles. We lack even a basic observational assessment
of the multiphase gaseous content of galaxy halos on 100 kpc scales,
and we do not know how these processes vary with galaxy properties.
This ignorance is presently one of the key impediments to
understanding galaxy formation in general. We propose to use the
high-resolution gratings G130M and G160M on the Cosmic Origins
Spectrograph to obtain sensitive column density measurements of a
comprehensive suite of multiphase ions in the spectra of 43 z 1 QSOs
lying behind 43 galaxies selected from the Sloan Digital Sky Survey.
In aggregate, these sightlines will constitute a statistically sound
map of the physical state and metallicity of gaseous halos, and
subsets of the data with cuts on galaxy mass, color, and SFR will seek
out predicted variations of gas properties with galaxy properties. Our
interpretation of these data will be aided by state-of-the-art
hydrodynamic simulations of accretion and feedback, in turn providing
information to refine and test such models. We will also use Keck,
MMT, and Magellan (as needed) to obtain optical spectra of the QSOs to
measure cold gas with Mg II, and optical spectra of the galaxies to
measure SFRs and to look for outflows. In addition to our other
science goals, these observations will help place the Milky Way's
population of multiphase, accreting High Velocity Clouds (HVCs) into a
global context by identifying analogous structures around other
galaxies. Our program is designed to make optimal use of the unique
capabilities of COS to address our science goals and also generate a
rich dataset of other absorption-line systems.

S/C 12046

COS FUV DCE Memory Dump

Whenever the FUV detector high voltage is on, count rate and current
draw information is collected, monitored, and saved to DCE memory.
Every 10 msec the detector samples the currents from the HV power
supplies (HVIA, HVIB) and the AUX power supply (AUXI). The last 1000
samples are saved in memory, along with a histogram of the number of
occurrences of each current value.

In the case of a HV transient (known as a "crackle" on FUSE), where
one of these currents exceeds a preset threshold for a persistence
time, the HV will shut down, and the DCE memory will be dumped and
examined as part of the recovery procedure. However, if the current
exceeds the threshold for less than the persistence time (a
"mini-crackle" in FUSE parlance), there is no way to know without
dumping DCE memory. By dumping and examining the histograms regularly,
we will be able to monitor any changes in the rate of "mini-crackles"
and thus learn something about the state of the detector.

STIS/CCD 11845

CCD Dark Monitor Part 2

Monitor the darks for the STIS CCD.

STIS/CCD 11847

CCD Bias Monitor-Part 2

Monitor the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1,
and 1x1 at gain = 4, to build up high-S/N superbiases and track the
evolution of hot columns.

WFC3/ACS/IR 11600

Star Formation, Extinction, and Metallicity at 0.7z1.5: H-Alpha
Fluxes and Sizes from a Grism Survey of GOODS-N

The global star formation rate (SFR) is ~10x higher at z=1 than today.
This could be due to drastically elevated SFR in some fraction of
galaxies, such as mergers with central bursts, or a higher SFR across
the board. Either means that the conditions in z=1 star forming
galaxies could be quite different from local objects. The next step
beyond measuring the global SFR is to determine the dependence of SFR,
obscuration, metallicity, and size of the star-forming region on
galaxy mass and redshift. However, SFR indicators at z=1 typically
apply local calibrations for UV, [O II] and far-IR, and do not agree
with each other on a galaxy-by-galaxy basis. Extinction, metallicity,
and dust properties cause uncontrolled offsets in SFR calibrations.
The great missing link is Balmer H-alpha, the most sensitive probe of
SFR. We propose a slitless WFC3/G141 IR grism survey of GOODS-N, at 2
orbits/pointing. It will detect Ha+[N II] emission from 0.7z1.5, to
L(Ha) = 1.7 x 10^41 erg/sec at z=1, measuring H-alpha fluxes and sizes
for 600 galaxies, and a small number of higher-redshift emitters.
This will produce: an emission-line redshift survey unbiased by
magnitude and color selection; star formation rates as a function of
galaxy properties, e.g. stellar mass and morphology/mergers measured
by ACS; comparisons of SFRs from H-alpha to UV and far-IR indicators;
calibrations of line ratios of H-alpha to important nebular lines such
as [O II] and H-beta, measuring variations in metallicity and
extinction and their effect on SFR estimates; and the first
measurement of scale lengths of the H-alpha emitting, star-forming
region in a large sample of z~1 sources.

WFC3/IR 11696

Infrared Survey of Star Formation Across Cosmic Time

We propose to use the unique power of WFC3 slitless spectroscopy to
measure the evolution of cosmic star formation from the end of the
reionization epoch at z6 to the close of the galaxy-building era at
z~0.3.Pure parallel observations with the grisms have proven to be
efficient for identifying line emission from galaxies across a broad
range of redshifts. The G102 grism on WFC3 was designed to extend this
capability to search for Ly-alpha emission from the first galaxies.
Using up to 250 orbits of pure parallel WFC3 spectroscopy, we will
observe about 40 deep (4-5 orbit) fields with the combination of G102
and G141, and about 20 shallow (2-3 orbit) fields with G141 alone.

Our primary science goals at the highest redshifts a (1) Detect Lya
in ~100 galaxies with z5.6 and measure the evolution of the Lya
luminosity function, independent of of cosmic variance; 2) Determine
the connection between emission line selected and continuum-break
selected galaxies at these high redshifts, and 3) Search for the
proposed signature of neutral hydrogen absorption at re-ionization. At
intermediate redshifts we will (4) Detect more than 1000 galaxies in
Halpha at 0.5z1.8 to measure the evolution of the
extinction-corrected star formation density across the peak epoch of
star formation. This is over an order-of-magnitude improvement in the
current statistics, from the NICMOS Parallel grism survey. (5) Trace
``cosmic downsizing" from 0.5z2.2; and (6) Estimate the evolution in
reddening and metallicty in star-forming galaxies and measure the
evolution of the Seyfert population. For hundreds of spectra we will
be able to measure one or even two line pair ratios -- in particular,
the Balmer decrement and [OII]/[OIII] are sensitive to gas reddening
and metallicity. As a bonus, the G102 grism offers the possibility of
detecting Lya emission at z=7-8.8.

To identify single-line Lya emitters, we will exploit the wide
0.8--1.9um wavelength coverage of the combined G102+G141 spectra. All
[OII] and [OIII] interlopers detected in G102 will be reliably
separated from true LAEs by the detection of at least one strong line
in the G141 spectrum, without the need for any ancillary data. We
waive all proprietary rights to our data and will make high-level data
products available through the ST/ECF.

WFC3/IR/S/C 11929

IR Dark Current Monitor

Analyses of ground test data showed that dark current signals are more
reliably removed from science data using darks taken with the same
exposure sequences as the science data, than with a single dark
current image scaled by desired exposure time. Therefore, dark current
images must be collected using all sample sequences that will be used
in science observations. These observations will be used to monitor
changes in the dark current of the WFC3-IR channel on a day-to-day
basis, and to build calibration dark current ramps for each of the
sample sequences to be used by Gos in Cycle 17. For each sample
sequence/array size combination, a median ramp will be created and
delivered to the calibration database system (CDBS).

WFC3/UVIS 11905

WFC3 UVIS CCD Daily Monitor

The behavior of the WFC3 UVIS CCD will be monitored daily with a set
of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K
subarray biases are acquired at less frequent intervals throughout the
cycle to support subarray science observations. The internals from
this proposal, along with those from the anneal procedure (Proposal
11909), will be used to generate the necessary superbias and superdark
reference files for the calibration pipeline (CDBS).

Ads
 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Daily Report Cooper, Joe Hubble 0 December 22nd 08 05:17 PM
Daily Report #4465 Cooper, Joe Hubble 0 October 11th 07 03:23 PM
Daily Report #4454 Cooper, Joe Hubble 0 September 25th 07 05:05 PM
Daily Report [email protected] Hubble 0 October 29th 04 04:59 PM
HST Daily Report 131 George Barbehenn Hubble 0 May 11th 04 02:48 PM


All times are GMT +1. The time now is 05:37 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2019, Jelsoft Enterprises Ltd.
Copyright 2004-2019 SpaceBanter.com.
The comments are property of their posters.