A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily 3759



 
 
Thread Tools Display Modes
  #1  
Old December 20th 04, 04:44 PM
external usenet poster
 
Posts: n/a
Default Daily 3759

HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

DAILY REPORT # 3759

PERIOD COVERED: DOYs 352-354

OBSERVATIONS SCHEDULED

ACS/WFC/WFPC2 9774

Young Massive Clusters in Spiral Galaxies and the Connection with Open
Clusters

We propose to carry out a census of star clusters in the disks of the
nearby spiral galaxies NGC 45, NGC 1313, NGC 4395, NGC 5236 and NGC
7793. Using ACS, we will identify much fainter and older star clusters
than possible in previous ground-based surveys, or even in HST imaging
of more distant galaxies. For the first time, we will directly explore
the connection between young "massive'' {or "super''} star clusters
{YMCs} and lower-mass "open'' clusters in different star forming
environments. We will test the universality of the luminosity- and
mass functions of stellar clusters and establish whether the presence
of YMCs is a result of a top-heavy cluster luminosity function, or
follows from generally richer cluster systems. Our target galaxies
span a range of morphological properties, surface brightness and star
formation rate. Some of them are known from ground-based studies to
host large numbers of YMCs while others have more modest cluster
populations. However, previous ground-based data were restricted to
luminous clusters younger than about 500 Myr. Here we will extend the
search to clusters formed throughout the entire lifetime of each
galaxy and reach clusters with properties typical of the Milky Way
open clusters. This will allow us to close the gap between studies of
extragalactic and Galactic disk clusters.

NIC1/NIC2/NIC3 8794

NICMOS Post-SAA calibration - CR Persistence Part 5

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be
non-standard reference files available to users with a USEAFTER
date/time mark. The keyword 'USEAFTER=date/time' will also be added to
the header of each POST-SAA DARK frame. The keyword must be populated
with the time, in addition to the date, because HST crosses the SAA ~8
times per day so each POST-SAA DARK will need to have the appropriate
time specified, for users to identify the ones they need. Both the raw
and processed images will be archived as POST-SAA DARKSs. Generally we
expect that all NICMOS science/calibration observations started within
50 minutes of leaving an SAA will need such maps to remove the CR
persistence from the science images. Each observation will need its
own CRMAP, as different SAA passages leave different imprints on the
NICMOS detectors.

ACS/HRC 10377

ACS Earth Flats

High signal sky flats will be obtained by observing the bright Earth
with the HRC and WFC. These observations will be used to verify the
accuracy of the flats currently used by the pipeline and will provide
a comparison with flats derived via other techniques: L- flats from
stellar observations, sky flats from stacked GO observations, and
internal flats using the calibration lamps. Weekly coronagraphic
monitoring is required to assess the changing position of the spots.

ACS/HRC 10375

Stability of the ACS CCD: Flat fielding, Photometry, Geometry

This program will verify that the low frequency flat fielding, the
photometry, and the geometric distortion are stable in time and across
the field of view of the CCD detectors. A moderately crowded stellar
field, located ~6' West of the center of the cluster 47 Tuc, is
observed every three months with the WFC and HRC using the full suite
of broad and narrow band filters. The same field has been observed
during SMOV to derive low frequency corrections to the ground flats
and to create a master catalogue of positions and magnitudes from
dithered observations of the cluster. In Cycles 11-12, this field was
observed again using single pointings at various roll angles. The
positions and magnitudes of objects are used to monitor local and
large scale variations in the plate scale and the sensitivity of the
detectors. The Cycle 13 program will continue to monitor these effects
and will derive an independent measure of the detector CTE.

ACS/HRC/WFC 10367

ACS CCDs daily monitor- cycle 13 - part 1

This program consists of a set of basic tests to monitor, the read
noise, the development of hot pixels and test for any source of noise
in ACS CCD detectors. The files, biases and dark will be used to
create reference files for science calibration. This programme will be
for the entire lifetime of ACS.

ACS/WFC/NIC3 10340

PANS

Type Ia supernovae {SNe Ia} provide the only direct evidence for an
accelerating universe, an extraordinary result that needs the most
rigorous test. The case for cosmic acceleration rests on the
observation that SNe Ia at z = 0.5 are about 0.25 mag fainter than
they would be in a universe without acceleration. A powerful and
straightforward way to assess the reliability of the SN Ia measurement
and the conceptual framework of its interpretation is to look for
cosmic deceleration at z 1. This would be a clear signature of a
mixed dark-matter and dark-energy universe. Systematic errors in the
SNe Ia result attributed to grey dust or cosmic evolution of the SN Ia
peak luminosity would not show this change of sign. We have obtained a
toehold on this putative ``epoch of deceleration'' with SN 1997ff at z
= 1.7, and 3 more at z 1 from our Cycle 11 program, all found and
followed by HST. However, this is too important a test to rest on just
a few objects, anyone of which could be subject to a lensed
line-of-sight or misidentification. Here we propose to extend our
measurement with observations of twelve SNe Ia in the range 1.0 z
1.5 or 6 such SNe Ia and 1 ultradistant SN Ia at z = 2, that will be
discovered as a byproduct from proposed Treasury and DD programs.
These objects will provide a much firmer foundation for a conclusion
that touches on important questions of fundamental physics.

NIC3 10337

The COSMOS 2-Degree ACS Survey NICMOS Parallels

The COSMOS 2-Degree ACS Survey NICMOS Parallels. This program is a
companion to program 10092.

ACS/WFC 10217

The ACS Fornax Cluster Survey

The two rich clusters nearest to the Milky Way, and the only large
collections of early- type galaxies within ~ 25 Mpc, are the Virgo and
Fornax Clusters. We propose to exploit the exceptional imaging
capabilities of the ACS/WFC to carry out the most comprehensive
imaging survey to date of early-type galaxies in Fornax: the ACS
Fornax Cluster Survey. Deep ACS/WFC images -- in the F475W {g'} and
F850LP {z'} bands -- will be acquired for 44 E, S0, dE, dE, N and dS0
cluster members. In Cycle 11, we initiated a similar program targeting
early-type galaxies in the Virgo Cluster {the ACS Virgo Cluster
Survey; GO-9401}. Our proposed survey of Fornax would yield an
extraordinary dataset which would complement that already in hand for
Virgo, and allow a definitive study of the role played by environment
in the structure, formation and evolution of early-type galaxies and
their globular cluster systems, nuclei, stellar populations, dust
content, nuclear morphologies and merger histories. It would also be a
community resource for years to come and, together with the ACS Virgo
Cluster Survey, constitute one of the lasting legacies of HST.

ACS/WFC 10178

Imaging Polarimetry of Young Stellar Objects with ACS and NICMOS: A
study in dust grain evolution

The formation of planetary systems is intimately linked to the dust
population in circumstellar disks, thus understanding dust grain
evolution is essential to advancing our understanding of how planets
form. By combining {1} the high resolution polarimetric capabilities
of ACS and NICMOS, {2} powerful 3-D radiative transfer codes, and {3}
observations of objects known to span the earliest stellar
evolutionary phases, we will gain crucial insight into the initial
phases of dust grain growth: evolution away from an ISM distribution.
Fractional polarization is a strong function of wavelength, therefore
by comparing polarimetric images in the optical and infrared, we can
sensitively constrain not only the geometry and optical depth of the
scattering medium, but also the grain size distribution. By observing
objects representative of the earliest evolutionary sequence of YSOs,
we will be able to investigate how the dust population evolves in size
and distribution during the crucial transition from a disk+envelope
system to a disk+star system. The proposed study will help to
establish the fundamental time scales for the initial depletion of
ISM-like grains: the first step in understanding the transformation
from small submicron sized dust grains, to large millimeter sized
grains, and untimely to planetary bodies.

NIC2 10176

Coronagraphic Survey for Giant Planets Around Nearby Young Stars

A systematic imaging search for extra-solar Jovian planets is now
possible thanks to recent progress in identifying "young stars near
Earth". For most of the proposed young {~ 30 Myrs} and nearby {~ 60
pc} targets, we can detect a few Jupiter-mass planets as close as a
few tens of AUs from the primary stars. This represents the first time
that potential analogs of our solar system - that is planetary systems
with giant planets having semi-major axes comparable to those of the
four giant planets of the Solar System - come within the grasp of
existing instrumentation. Our proposed targets have not been observed
for planets with the Hubble Space Telescope previously. Considering
the very successful earlier NICMOS observations of low mass brown
dwarfs and planetary disks among members of the TW Hydrae Association,
a fair fraction of our targets should also turn out to posses low mass
brown dwarfs, giant planets, or dusty planetary disks because our
targets are similar to {or even better than} the TW Hydrae stars in
terms of youth and proximity to Earth. Should HST time be awarded and
planetary mass candidates be found, proper motion follow-up of
candidate planets will be done with ground-based AOs.

ACS/WFC/NIC3/WFPC 10134 2 The Evolution and Assembly of Galactic
Disks: Integrated studies of mass, stars and gas in the Extended Groth
Strip

This project is a 126-orbit imaging survey in F606W/F814W ACS to
measure the evolution of galaxy disks from redshift z = 1.4 to the
present. By combining HST imaging with existing observations in the
Extended Groth Strip, we can for the first time simultaneously
determine the mass in dark matter that underlies disks, the mass in
stars within those disks, and the rate of formation of new stars from
gas in the disks, for samples of 1, 000 objects. ACS observations are
critical for this work, both for reliable identifications of disks and
for determining their sizes and inclinations. Combining these data
with the kinematics measured from high-resolution Keck DEIMOS spectra
will give dynamical masses that include dark matter. Stellar masses
can be measured separately using ground-based BRIK and Spitzer IRAC
GTO data, while cross-calibrated star formation rates will come from
DEEP2 spectra, GALEX, and Spitzer/MIPS. The field chosen is the only
one where all multiwavelength data needed will be available in the
near term. These data will show how the fundamental properties of
disks {luminosity, rotation speed, scale length} and their scaling
relations have evolved since z~1, and also will measure the build-up
of stellar disks directly, providing fundamental tests of disk
formation and evolution. In addition to the above study of disk
galaxies, the data will also be used to measure the evolution of
red-sequence galaxies and their associated stellar populations. ACS
images will yield the number of red-sequence galaxies versus time,
together with their total associated stellar mass. ACS images are
crucial to classify red-sequence galaxies into normal E/S0s versus
peculiar types and to measure radii, which will complete the suite of
fundamental structural parameters needed to study evolution. We will
measure the zeropoints of major scaling laws {Fundamental Plane,
radius versus sigma}, as well as evolution in characteristic
quantities such as L*, v*, and r*. Stellar population ages will be
estimated from high-resolution Keck DEIMOS spectra and compared to SED
evolution measured from GALEX, HST, Spitzer, and ground-based colors.
Important for both disk and red-galaxy programs are parallel exposures
to be taken with both NIC3 {J and H} and WFPC2 {B}. These are arranged
so that ACS, WFPC2, and NIC3 all overlap where possible , providing a
rich data set of galaxies imaged with all three HST cameras from B to
H. These data will be used to measure restframe visible morphologies
and UV star-formation rates for galaxies near the edge of the survey,
to discover and count EROs below the Keck spectroscopic limit of R =
24, and to provide an improved database of photometric redshifts for
galaxies in the overlap regions.

WFPC2 10132

UV Confirmation of New Quasar Sightlines Suitable for the Study of
Intergalactic Helium

The reionization of intergalactic helium is thought to have occurred
between redshifts of about 3 and 4. The study of HeII Lyman-alpha
absorption towards a half-dozen quasars at 2.7z3.5 demonstrates the
great potential of such probes of the IGM, but the current
critically-small sample limits confidence in resulting cosmological
inferences. The requisite unobscured quasar sightlines to
high-redshift are extremely rare, especially due to severe absorption
in random intervening Lyman-limit systems, but SDSS provides hundreds
of bright, new quasars at such redshifts potentially suitable for HeII
studies. Our cycle 13 SNAP program proposes to verify the UV
detectability of 40 new, bright, z2.9 SDSS quasars, but with special
emphasis on extending helium studies to the highest redshift
sightlines. Our proposed approach has already proven successful, and
additional sightlines will enable follow-up spectal observations to
measure the spectrum and evolution of the ionizing background
radiation, the density of intergalactic baryons, and the epoch of
reionization of the IGM.

ACS/WFC/NIC3 10127

Imaging a protocluster at z=3.1: Effects of environment and evolution
on galaxy populations in the early universe

We propose imaging a rich protocluster, 0316-26 at z = 3.13, with 31
confirmed Lya cluster members. The bright radio galaxy host is
identified with the progenitor of the dominant cluster galaxy. Because
its redshift places Lya into an ACS narrow-band filter, the
protocluster provides a unique laboratory for studying galaxies at a
crucial epoch in the evolution of the Universe. We shall {i} measure
and compare sizes, morphologies and colors of galaxies from
populations detected using 4 different selection techniques {Lyman and
4000A breaks, Lya and [OIII] excesses}, {ii} study effects of an
overdense environment by comparing the properties of protocluster
galaxies with z~3 field galaxies from GOODS, {iii} study effects of
evolution by relating our data to observations of similar
protocluster/cluster targets at redshifts z = 4.1, 2.2, and 1.2, and
{iv} constrain the formation of the most massive cluster galaxies by
investigating the spatial distribution, Lya equivalent widths and
other properties within the 5" radio galaxy host. The ultimate aim is
to disentangle the history of structure development and stellar
evolution for rich clusters of galaxies.

ACS/WFC/WFPC2 10092

The COSMOS 2-Degree ACS Survey

We will undertake a 2 square degree imaging survey {Cosmic Evolution
Survey -- COSMOS} with ACS in the I {F814W} band of the VIMOS
equatorial field. This wide field survey is essential to understand
the interplay between Large Scale Structure {LSS} evolution and the
formation of galaxies, dark matter and AGNs and is the one region of
parameter space completely unexplored at present by HST. The
equatorial field was selected for its accessibility to all
ground-based telescopes and low IR background and because it will
eventually contain ~100, 000 galaxy spectra from the VLT-VIMOS
instrument. The imaging will detect over 2 million objects with I 27
mag {AB, 10 sigma}, over 35, 000 Lyman Break Galaxies {LBGs} and
extremely red galaxies out to z ~ 5. COSMOS is the only HST project
specifically designed to probe the formation and evolution of
structures ranging from galaxies up to Coma-size clusters in the epoch
of peak galaxy, AGN, star and cluster formation {z ~0.5 to 3}. The
size of the largest structures necessitate the 2 degree field. Our
team is committed to the assembly of several public ancillary datasets
including the optical spectra, deep XMM and VLA imaging, ground-based
optical/IR imaging, UV imaging from GALEX and IR data from SIRTF.
Combining the full-spectrum multiwavelength imaging and spectroscopic
coverage with ACS sub-kpc resolution, COSMOS will be Hubble's ultimate
legacy for understanding the evolution of both the visible and dark
universe.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.) None

COMPLETED OPS REQs: None

OPS NOTES EXECUTED:
0916-0 Tabulation of Slew Attitude Error (Miss-distance) @ 355/0039z


SCHEDULED SUCCESSFUL FAILURE TIMES
FGS Gsacq 24 24
FGS Reacq 22 22
FHST Update 36 36
LOSS of LOCK


SIGNIFICANT EVENTS: None



 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
NEW UFO Website: Daily UFO News Paleo-Conservative SETI 2 November 28th 04 05:13 PM
EVOLUTION DEAD AT AGE 126 -- R.I.P. Ed Conrad Astronomy Misc 4 August 21st 04 12:01 AM
Monitoring NASA Daily ISS Report JimO Space Station 2 June 1st 04 10:33 PM
Spirit's daily activities schedule? Matti Anttila Policy 0 January 15th 04 09:39 AM
best site for daily schedule of rover activity? bob History 2 January 5th 04 01:16 PM


All times are GMT +1. The time now is 05:02 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.