A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily 3739



 
 
Thread Tools Display Modes
  #1  
Old November 18th 04, 03:30 PM
Dave Lychenheim
external usenet poster
 
Posts: n/a
Default Daily 3739

HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

DAILY REPORT # 3739

PERIOD COVERED: DOY 322

OBSERVATIONS SCHEDULED

ACS/HRC 9792

Uncovering the CV population in M15: a deep, time-resolved, far-UV
survey of the cluster core

We propose to carry out a deep, far-ultraviolet {FUV}, time-resolved
for faint cataclysmic variables {CVs} and other dynamically-formed
objects in the globular cluster {GC} M15. We will use the ACS/SBC to
carry out 6 epochs of FUV imaging of this cluster in a single filter,
and will use two additional visits to obtain images in other FUV and
NUV filters. Since crowding is not a problem in the FUV, this will
yield time-resolved FUV photometry of all blue objects in the cluster
core. Our CV census will be both deep enough to be essentially
complete and ``broad'' enough to involve all of the following CV
characteristics: {1} UV brightness; {2} blue FUV spectral shape; {3}
strong CIV and HeII emission; {4} short time-scale {$sim$ minutes}
variability {flickering, WD spin}; {6} intermediate time-scale {$sim$
hours} variability {orbital variations}; {7} long time-scale {$sim$
weeks} variability {dwarf nova eruptions}. We will thus find the CV
population in M15, if it exists. In addition, our survey will detect
numerous blue stragglers and hot white dwarfs, as well as any other
blue objects near the core. Finally, our photometry will yield
high-quality FUV light curves of the two low-mass x-ray binaries in
M15.

ACS/HRC/WFC 10367

ACS CCDs daily monitor- cycle 13 - part 1

This program consists of a set of basic tests to monitor, the read
noise, the development of hot pixels and test for any source of noise
in ACS CCD detectors. The files, biases and dark will be used to
create reference files for science calibration. This programme will be
for the entire lifetime of ACS.

ACS/HRC/WFC/WFPC2 10384

Focus Monitor

The focus of HST is measured from WFPC2/PC and ACS/HRC images of
stars. Multiple exposures are taken in parallel over an orbit to
determine the influence of breathing on the derived mean focus.
Observations are taken of clusters with suitable orientations to
ensure stars appear in all fields.

ACS/WFC 10334

i-Band Dropouts around High-z Radio Quasars

We will carry out deep F606W/F814W or F775W/F850LP imaging of three
high-redshift radio quasars to search for an excess of dropouts. Also
see program 9291 and 9777.

ACS/WFC 9788

A Narrow-band Snapshot Survey of Nearby Galaxies

We propose to use ACS/WFC to conduct the first comprehensive HST
narrow-band {H- alpha + [N II]} imaging survey of the central regions
of nearby bulge-dominated disk {S0 to Sbc} galaxies. This survey will
cover, at high angular resolution extending over a large field, an
unprecedented number of galaxies representing many different
environments. It will have important applications for many
astrophysical problems of current interest, and it will be an
invaluable addition to the HST legacy. The observations will be
conducted in snapshot mode, drawing targets from a complete sample of
145 galaxies selected from the Palomar spectroscopic survey of nearby
galaxies. Our group will use the data for two primary applications.
First, we will search for nuclear emission-line disks suitable for
future kinematic measurements with STIS, in order to better constrain
the recently discovered relations between black hole mass and bulge
properties. Preliminary imaging of the type proposed here must be
done, sooner or later, if we are to make progress in this exciting new
field. Second, we will investigate a number of issues related to
extragalactic star formation. Specifically, we will systematically
characterize the properties of H II regions and super star clusters on
all galactic scales, from circumnuclear regions to the large-scale
disk.

ACS/WFC/NIC2 10189

PANS-Probing Acceleration Now with Supernovae

Type Ia supernovae {SNe Ia} provide the most direct evidence for an
accelerating Universe, a result widely attributed to dark energy.
Using HST in Cycle 11 we extended the Hubble diagram with 6 of the 7
highest-redshift SNe Ia known, all at z1.25, providing conclusive
evidence of an earlier epoch of cosmic deceleration. The full sample
of 16 new SNe Ia match the cosmic concordance model and are
inconsistent with a simple model of evolution or dust as alternatives
to dark energy. Understanding dark energy may be the biggest current
challenge to cosmology and particle physics. To understand the nature
of dark energy, we seek to measure its two most fundamental
properties: its evolution {i.e., dw/dz}, and its recent equation of
state {i.e., w{z=0}}. SNe Ia at z1, beyond the reach of the ground
but squarely within the reach of HST with ACS, are crucial to break
the degeneracy in the measurements of these two basic aspects of dark
energy. The SNe Ia we have discovered and measured with HST in Cycle
11, now double the precision of our knowledge of both properties. Here
we propose to quadruple the sample of SNe Ia at z1 in the next two
cycles, complementing on-going surveys from the ground at z1, and
again doubling the precision of dark energy constraints. Should the
current best fit model prove to be the correct one, the precision
expected from the current proposal will suffice to rule out a
cosmological constant at the 99% confidence level. Whatever the
result, these objects will provide the basis with which to extend our
empirical knowledge of this newly discovered and dominant component of
the Universe, and will remain one of the most significant legacies of
HST. In addition, our survey and follow-up data will greatly enhance
the value of the archival data within the target Treasury fields for
galaxy studies.

ACS/WFC/WFPC2 10138

Searching for the Bottom of the Initial Mass Function

The minimum mass of the Initial Mass Function {IMF} should be a direct
reflection of the physical processes that dominate in the formation of
stars and brown dwarfs. To date, the IMF has been measured down to 10
M_Jup in a few young clusters; there is no sign of a low-mass cutoff
in the data for these clusters. We propose to obtain deep images in
the SDSS i and z filters {i=26, z=25} with the ACS/WFC on HST for a
800"x1000" field in the Chamaeleon I star-forming region {2 Myr, 160
pc}. By combining these HST data {0.8, 0.9 um} with comparably deep
broad-band photometry from ground-based telescopes {1.2, 1.6, 2.2 um}
and SIRTF {3.6, 4.5, 5.8, 8.0 um}, we will measure the mass function
of brown dwarfs down to the mass of Jupiter and thus determine the
lowest mass at which objects can form in isolation in a typical star
forming cluster.

FGS 10106

An Astrometric Calibration of the Cepheid Period-Luminosity Relation

We propose to measure the parallaxes of 10 Galactic Cepheid variables.
When these parallaxes {with 1-sigma precisions of 10% or better} are
added to our recent HST FGS parallax determination of delta Cep
{Benedict et al 2002}, we anticipate determining the Period-Luminosity
relation zero point with a 0.03 mag precision. In addition to
permitting the test of assumptions that enter into other Cepheid
distance determination techniques, this calibration will reintroduce
Galactic Cepheids as a fundamental step in the extragalactic distance
scale ladder. A Period-Luminosity relation derived from solar
metallicity Cepheids can be applied directly to extragalactic solar
metallicity Cepheids, removing the need to bridge with the Large
Magellanic Cloud and its associated metallicity complications.

FGS 10432

Precise Distances to Nearby Planetary Nebulae

We propose to carry out astrometry with the FGS to obtain accurate and
precise distances to four nearby planetary nebulae. In 1992, Cahn et
al. noted that ``The distances to Galactic planetary nebulae remain a
serious, if not THE most serious, problem in the field, despite
decades of study.'' Twelve years later, the same statement still
applies. Because the distances to planetary nebulae are so uncertain,
our understanding of their masses, luminosities, scale height, birth
rate, and evolutionary state is severely limited. To help remedy this
problem, HST astrometry can guarantee parallaxes with half the error
of any other available approach. These data, when combined with
parallax measurements from the USNO, will improve distance
measurements by more than a factor of two, producing more accurate
distances with uncertainties that are of the order of ~6%. Lastly,
most planetary nebula distance scales in the literature are
statistical. They require several anchor points of known distance in
order to calibrate their zero point. Our program will provide "gold
standard" anchor points by the end of 2006, a decade before any
anticipated results from future space astrometry missions.

NIC1 10208

NICMOS Differential Imaging Search for Planetary Mass Companions to
Nearby Young Brown Dwarfs

We propose to use the differential spectral imaging capability of
HST/NICMOS {NIC1} to search for planetary mass companions. We target
the twelve most nearby {within 30 pc}, isolated {no known close
companion}, and young { 1Gyr} brown dwarfs. All of them have spectral
type L and show signs of Lithium absorption, which clearly proves
their substellar nature and youth. Planetary mass companions with
masses down to 6 Jupiter masses, and at separations larger than 3 A.U.
are bright enough for a direct detection with HST/NICMOS using the
spectral differential imaging technique in two narrow-band filters
placed on and off molecular bands. The proposed project has the
potential to lead to the first direct detection of a planetary mass
object in orbit around a nearby brown dwarf.

NIC1/NIC2/NIC3 8794

NICMOS Post-SAA calibration - CR Persistence Part 5

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be
non-standard reference files available to users with a USEAFTER
date/time mark. The keyword 'USEAFTER=date/time' will also be added to
the header of each POST-SAA DARK frame. The keyword must be populated
with the time, in addition to the date, because HST crosses the SAA ~8
times per day so each POST-SAA DARK will need to have the appropriate
time specified, for users to identify the ones they need. Both the raw
and processed images will be archived as POST-SAA DARKSs. Generally we
expect that all NICMOS science/calibration observations started within
50 minutes of leaving an SAA will need such maps to remove the CR
persistence from the science images. Each observation will need its
own CRMAP, as different SAA passages leave different imprints on the
NICMOS detectors.

NIC1/Spacecraft 10382

NICMOS Focus Stability

The purpose of this activity is to determine the best focus. This
program will execute in one month intervals starting about 1 month
after the last execution of proposal 9994 {the previous focus
monitoring program}. The program starts with a focus sweep using only
the NIC1 camera {visit 11}. The following observation is with the NIC2
camera {visit 12} after about 45 days. This pattern is repeated
throughout the period except for Feb 15 where also the NIC3 camera is
used. In total this will result in 9 orbits. Notice that VISIT #1 #2
refers to visits for #1 sequential visit number for a given camera #2
camera in question visit 32 is therefore the third visit for camera 2.

NIC3 9824

NIC3 SNAPs of nearby galaxies imaged in the mid-UV: the remarkable
cool stellar population in late-type galaxies.

We propose a NIC3 H-band {F160W} SNAPshot survey of 48 nearby mid- to
late-type galaxies covering all inclinations. In Cycle 9 and 10, we
imaged ~100 galaxies in the mid- UV {F300W/F255W} and I-band {F814W}
with WFPC2, and obtained UBVR CCD surface photometry from the ground.
Early-mid-type galaxies show the usual small radial color- gradients,
where disks become somewhat bluer at larger radii. But, remarkably,
the majority of {lower luminosity, smaller and rounder} late-type
galaxies shows the opposite trend and becomes redder outwards in all
filters. While young UV/blue-bright stellar populations dominate their
inner morphology, most late-type galaxies must have a significant halo
or thick disk of older stars. Combining our proposed NIC3 H-band with
existing WFPC2 images will span the wavelength range 0.29-1.6 micron
at resolutions of 0.04-0.16" {FWHM}. This Panchromatic Nearby Galaxy
Atlas will be applicable to a wide range of problems, and will be made
public immediately. Our NIC3/F160W science goals are to: {1} Establish
the nature of the old outer stellar population. All target galaxies
have z0.005, allowing us to resolve any luminous, cool supergiant
population. NIC3 is essential to make a pixel-to-pixel color-magnitude
study of the nature, distribution and uniformity of the outer stellar
populations, which will constrain dwarf galaxy formation theories. {2}
Determine galaxy structure at 5-20 pc resolution, tracing the old
stellar population and mass distribution compared to the star-forming
regions seen in the mid- UV. A range of inclinations is needed to
distinguish between old thick disks or halos in late-type galaxies.
{3} Make a multi-wavelength pixel-to-pixel decomposition to help
delineate the effects of dust, age, and metallicity. Since we must
cover a range of inclinations, NIC3 H-band is essential to map the
effects from dust, and see how these may affect the studies of {1} and
{2}.

S/C 10440

2-Gyro T2G On-Orbit Test: FHST Activities

This proposal contains the FHST activities that will be scheduled
during the on-orbit test. Activities include FHST shutter opens and
closes, FHST Availability on and off, On- Board Attitude Determination
{OBAD or OAD} without the following attitude correction. All these
visits will be scheduled as parallels on top of the pointed visits in
proposal 10439.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.) None

COMPLETED OPS REQs:
17308-1 Off-line the +DD, +C, and +B Post TGS Test @ 322/1729z
17315-1 V2 FGS Attitude Error Threshold Change @ 322/2303z

OPS NOTES EXECUTED:
1289-0 HST486 Full RAM Memory Dump @ 323/0100z


SCHEDULED SUCCESSFUL FAILURE TIMES
FGS Gsacq 08 08
FGS Reacq 06 06
FHST Update 18 18
LOSS of LOCK


SIGNIFICANT EVENTS:

Successfully off-lined +DD (Battery 1, 4-string SPA), +C (Battery 2,
4-string SPA), and +B (Battery 4, 4-string SPA) @ 322/17:29Z (OR
17308-1 with attached IP-073 script). For the first orbit following
the reconfiguration, TRSWCC reached Trickle Charge in 45 minutes and
42 minutes for the second orbit.

Successfully changed the V2 FGS 44 command attitude error threshold
from 0.5 to 0.3 arcsec @ 322/23:03Z (OR 17315). The first GS
acquisition following the change occurred @ 322/23:50Z. There was no
real-time telemetry during the acquisition, but telemetry returned @
323/00:10Z revealed the acquisition was nominal.



 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
EVOLUTION DEAD AT AGE 126 -- R.I.P. Ed Conrad Astronomy Misc 4 August 21st 04 12:01 AM
Monitoring NASA Daily ISS Report JimO Space Station 2 June 1st 04 10:33 PM
Great customizable site for daily astro phenomena Victor Amateur Astronomy 2 April 8th 04 12:01 AM
JimO Speaks on 'Daily Planet' re Hubble JimO Policy 0 February 11th 04 10:53 PM
Spirit's daily activities schedule? Matti Anttila Policy 0 January 15th 04 08:39 AM


All times are GMT +1. The time now is 06:20 AM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.