A Space & astronomy forum. SpaceBanter.com

If this is your first visit, be sure to check out the FAQ by clicking the link above. You may have to register before you can post: click the register link above to proceed. To start viewing messages, select the forum that you want to visit from the selection below.

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily 3579



 
 
Thread Tools Display Modes
  #1  
Old March 29th 04, 04:22 PM
external usenet poster
 
Posts: n/a
Default Daily 3579

HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

DAILY REPORT # 3579

PERIOD COVERED: DOYs 86-88

OBSERVATIONS SCHEDULED

NIC3 9999

The COSMOS 2-Degree ACS Survey NICMOS Parallels

The COSMOS 2-Degree ACS Survey NICMOS Parallels. This program is a
companion to program 9822.

ACS/WFC/HRC 9977

Gravitational Microlensing in the NGC 3314A-B Galaxy Pair

Determining the composition of the dark matter that dominates the
masses of galaxies is an important unsolved problem, and the results
of the MACHO Collaboration suggest that some of Milky Way's dark
matter may be in the form of very old white dwarfs. However, some have
argued that the excess of microlensing events seen by MACHO are due to
a larger than expected microlensing rate for lens stars in the LMC
itself or its tidal debris. We propose to address this question by
detecting microlensing events in the line-of-sight galaxy pair NGC
3314 A & B. The large line-of-sight distance between these galaxies
gives an optical depth that is 3-4 orders of magnitude larger than if
the source stars and lenses were in the same galaxy, and the fact that
the background galaxy is a spiral ensures that there will be a
sufficient number of bright, non-variable source stars. Our proposed
observations should have the sensitivity to detect microlensing by
both ordinary stars and dark matter in NGC 3314A {the foreground
galaxy}. If there are dark matter microlensing events to be found,
they can be clearly distinguished from stellar microlensing events
because they will occur outside the visible disk of NGC 3314A. If
baryonic dark matter is detected in NGC 3314A, we will be able to map
its radial density variation.

ACS/HRC/WFC 9919

The Morphological, Photometric, and Spectroscopic Properties of
Intermediate Redshift Cluster Galaxies:

New and fundamental constraints on the evolutionary state of high
redshift clusters will be made by obtaining deep, multiband images
{SDSS r, i, z} over the central 1.5 Mpc regions of seven distant
clusters in the range 0.76 z 1.27. The ACS data will allow us to
{1} definitively establish the morphological composition and star
formation rates as functions of clustercentric radius, local density,
x-ray luminosity {obtained from accompanying Chandra, and XMM data},
{2} explore the relationship between substructure, kinematics, and
morphology, {3} strongly constrain the galaxy merger frequency and the
origins of elliptical and S0 galaxies, {4} measure the mass
distribution independently from the light {via gravitational lensing}
enabling comparisons with kinematically derived masses, and {5} study
the evolution of the structure of the brightest cluster members. The
clusters selected for this program already have extensive
spectroscopic observations and NIR imaging is either in hand or
underway from approved ground based programs. To date, the lower part
of this redshift range has only been marginally studied with HST. Our
sample includes the two most distant, spectroscopically confirmed
superclusters and will significantly increase the baseline over which
evolutionary effects can be studied. The data will also be used to
identify very high-z galaxies via their unique spectral properties.

FGS 9881

Dynamical Masses and Radii of Four White Dwarf Stars

The cool white dwarf stars WD1639+153 and WD1818+126 were recently
resolved by HST FGS1r to be double degenerate binary systems with
projected separations of 112 mas and 174 mas respectively. At a
distance of less than 50 pc they may both have periods shorter than
about 20 years, making them ideal candidates for follow up studies for
dynamical mass determinations. This will increase the number of white
dwarfs with dynamical mass measurements from the current 4 up to 8.
Continued observations of these white dwarfs along with nearby field
stars with the FGS will accurately determine the orbital elements and
parallax of each system. The mass and radius of all four white dwarfs
can be determined to an unprecedented 1%, making it possible to test
and calibrate the theoretical white dwarf mass radius relation at the
cool end of the cooling curve for the DA and DC subclasses. Since the
components of the binary are coeval, once the mass and radius, and
hence the cooling age of each star is known, it will be possible to
estimate the relation between the initial mass and final mass for all
four white dwarfs. We are requesting a total of 4 HST orbits per year
for the next three cycles to initiate the process that will result in
a determination of the mass and radius of the four white dwarfs.

FGS 9879

An Astrometric Calibration of the Cepheid Period-Luminosity Relation

We propose to measure the parallaxes of 10 Galactic Cepheid variables.
When these parallaxes {with 1-sigma precisions of 10% or better} are
added to our recent HST FGS parallax determination of delta Cep
{Benedict et al 2002}, we anticipate determining the Period-Luminosity
relation zero point with a 0.03 mag precision. In addition to
permitting the test of assumptions that enter into other Cepheid
distance determination techniques, this calibration will reintroduce
Galactic Cepheids as a fundamental step in the extragalactic distance
scale ladder. A Period-Luminosity relation derived from solar
metallicity Cepheids can be applied directly to extragalactic solar
metallicity Cepheids, removing the need to bridge with the Large
Magellanic Cloud and its associated metallicity complications.

WFPC2 9870

Low Mass Star Formation at Low Metallicity: Accretion Rates of
Pre-Main Sequence Stars in the Large Magellanic Cloud

As part of an ongoing effort to characterize the process of star
formation at low metallicity, we propose to measure by means of U-band
excess the current accretion rate for a homogenous sample of
newly-born stars in NGC 1850, a young {5 Myr} stellar cluster in the
LMC. Clearly, at this age most of the accretion has already taken
place and its intensity is declining with respect to the earliest
stages of formation. However, a comparison with Galactic Pre-Main
Sequence stars of the same age immediately leads to assessing the
relative strength of accretion when the metallicity is decreased by a
factor of three. We have already analyzed the images available in the
archive for these fields and we have determined the basic parameters
{effective temperature and luminosity} for all of the stars down to a
mass of ~0.9 Mo. To take the next step and determine the current
accretion rate we only need WFPC2 imaging of NGC 1850 in the F336W
passband. With three orbit worth of observations, we will reach
m{F336W}~23 with an accuracy of 0.1 mag. In spite of their unique
scientific potential, the data we apply for are relatively inexpensive
to gather, as they are the last missing tile of a large dataset
already available in the HST archive.

NIC/NIC3 9865

The NICMOS Parallel Observing Program

We propose to continue managing the NICMOS pure parallel program.
Based on our experience, we are well prepared to make optimal use of
the parallel opportunities. The improved sensitivity and efficiency of
our observations will substantially increase the number of
line-emitting galaxies detected. As our previous work has
demonstrated, the most frequently detected line is Halpha at
0.7z1.9, which provides an excellent measure of current star
formation rate. We will also detect star-forming and active galaxies
in other redshift ranges using other emission lines. The grism
observations will produce by far the best available Halpha luminosity
functions over the crucial--but poorly observed--redshift range where
galaxies appear to have assembled most of their stellar mass. This key
process of galaxy evolution needs to be studied with IR data; we found
that observations at shorter wavelengths appear to have missed a large
fraction of the star-formation in galaxies, due to dust reddening. We
will also obtain deep F110W and F160W images, to examine the space
densities and morphologies of faint red galaxies. In addition to
carrying out the public parallels, we will make the fully reduced and
calibrated images and spectra available on-line, with some
ground-based data for the deepest parallel fields included.

ACS/HRC 9851

Host Galaxies of Reverberation-Mapped AGNs

We propose to obtain unsaturated ACS high-resolution images of all
reverberation-mapped active galactic nuclei in order to remove the
point-like nuclear light from each image, thus yielding a
"nucleus-free" image of the host galaxy. This will allow investigation
of host-galaxy properties: our particular interest is determination of
the host-galaxy starlight contribution to the reverberation mapping
observations, which is necessary for accurate determination of the
relationship between the AGN continuum flux and the size of the broad
Balmer-line emitting region of AGNs. Because this relationship is used
to estimate black-hole masses of large samples of distant AGNs,
correct determination of the slope of this relationship is critically
important.

NIC1 9833

T Dwarf Companions: Searching for the Coldest Brown Dwarfs

Faint companions to known stars have historically led to the discovery
of new classes of stellar and substellar objects. Because these
discoveries are typically limited by the flux ratio of the components
in the system, the intrinsically faintest companions are most
effectively identified around the intrinsically faintest primaries. We
propose to use NICMOS to image a sample of 22 of the coolest known
{T-type} brown dwarfs in the Solar Neighborhood in order to search for
fainter and cooler brown dwarf companions. The high spatial resolution
of the NIC 1 detector enables us to distinguish binary systems with
apparent separations greater than 0"08, or physical separations
greater than 1.2 AU at the nominal distances of the objects in our
sample. Furthermore, the substantial sensitivity of NICMOS imaging
allows us to probe companion masses of 5-50 Jupiter masses and
companion effective temperatures of 250-1300 K in a maximally
efficient manner. Based on work to date, we expect that roughly 20% of
the objects in our sample will be binary, and that one or two of these
will likely harbor a significantly fainter secondary. Hence, we expect
to find a companion cooler than any currently known brown dwarf, a
potential prototype for the next spectral class. In addition, our
investigation will add substantially to the sample of known binary
brown dwarfs, allowing improved statistical analyses of the binary
fraction, separation distribution, and mass ratio distribution of
these systems, key quantities for probing brown dwarf formation. We
will also identify optimal substellar systems for astrometric mass
measurements, a critical check for theoretical models of brown dwarfs
and extrasolar planets.

ACS/WFC/WFPC2 9822

The COSMOS 2-Degree ACS Survey

We will undertake a 2 square degree imaging survey {Cosmic Evolution
Survey -- COSMOS} with ACS in the I {F814W} band of the VIMOS
equatorial field. This wide field survey is essential to understand
the interplay between Large Scale Structure {LSS} evolution and the
formation of galaxies, dark matter and AGNs and is the one region of
parameter space completely unexplored at present by HST. The
equatorial field was selected for its accessibility to all
ground-based telescopes and low IR background and because it will
eventually contain ~100, 000 galaxy spectra from the VLT-VIMOS
instrument. The imaging will detect over 2 million objects with I 27
mag {AB, 10 sigma}, over 35, 000 Lyman Break Galaxies {LBGs} and
extremely red galaxies out to z ~ 5. COSMOS is the only HST project
specifically designed to probe the formation and evolution of
structures ranging from galaxies up to Coma-size clusters in the epoch
of peak galaxy, AGN, star and cluster formation {z ~0.5 to 3}. The
size of the largest structures necessitate the 2 degree field. Our
team is committed to the assembly of several public ancillary datasets
including the optical spectra, deep XMM and VLA imaging, ground-based
optical/IR imaging, UV imaging from GALEX and IR data from SIRTF.
Combining the full-spectrum multiwavelength imaging and spectroscopic
coverage with ACS sub-kpc resolution, COSMOS will be Hubble's ultimate
legacy for understanding the evolution of both the visible and dark
universe.

ACS/WFC 9788

A Narrow-band Snapshot Survey of Nearby Galaxies

We propose to use ACS/WFC to conduct the first comprehensive HST
narrow-band {H-alpha + [N II]} imaging survey of the central regions
of nearby bulge-dominated disk {S0 to Sbc} galaxies. This survey will
cover, at high angular resolution extending over a large field, an
unprecedented number of galaxies representing many different
environments. It will have important applications for many
astrophysical problems of current interest, and it will be an
invaluable addition to the HST legacy. The observations will be
conducted in snapshot mode, drawing targets from a complete sample of
145 galaxies selected from the Palomar spectroscopic survey of nearby
galaxies. Our group will use the data for two primary applications.
First, we will search for nuclear emission-line disks suitable for
future kinematic measurements with STIS, in order to better constrain
the recently discovered relations between black hole mass and bulge
properties. Preliminary imaging of the type proposed here must be
done, sooner or later, if we are to make progress in this exciting new
field. Second, we will investigate a number of issues related to
extragalactic star formation. Specifically, we will systematically
characterize the properties of H II regions and super star clusters on
all galactic scales, from circumnuclear regions to the large-scale
disk.

STIS 9786

The Next Generation Spectral Library

We propose to continue the Cycle 10 snapshot program to produce a Next
Generation Spectral Library of 600 stars for use in modeling the
integrated light of galaxies and clusters. This program is using the
low dispersion UV and optical gratings of STIS. The library will be
roughly equally divided among four metallicities, very low {[Fe/H] lt
-1.5}, low {[Fe/H] -1.5 to -0.5}, near-solar {[Fe/H] -0.3 to 0.1}, and
super-solar {[Fe/H] gt 0.2}, well-sampling the entire HR-diagram in
each bin. Such a library will surpass all extant compilations and have
lasting archival value, well into the Next Generation Space Telescope
era. Because of the universal utility and community-broad nature of
this venture, we waive the entire proprietary period.

ACS/HRC/WFC 9781

Galaxy Evolution in Action : The Detailed Morphology of Post-Starburst
Galaxy

If galaxies evolve morphologically, then some should be in transition
between late and early types. One proposed evolutionary mechanism is a
galaxy-galaxy merger, but evolved merger products are difficult to
find. Fortunately, spectroscopic surveys have now uncovered large
numbers of E+A galaxies, a class of objects whose post-starburst
spectra, current lack of HI gas, and pressure-supported kinematics
suggest that they are the missing panel that connects the "Toomre
sequence" of merging spirals with normal ellipticals and S0s. Our
first HST observations of five of these galaxies are intriguing. We
find a considerable range of tidally disturbed morphologies, an "E+A"
fundamental plane, significant differences among the color gradients
within 1 kpc {~0.8''}, and populations of bright, blue globular
clusters. These initial results are difficult to interpret, however,
because they are drawn from a small sample of galaxies whose very blue
overall colors may have selected a particular evolutionary path of
E+As. Here we propose for ACS imaging of the remaining 15 E+As from
the Las Campanas Redshift Survey to probe the full range of E+A
properties. The proposed observations will allow us to 1} determine
what fraction of the interactions that lead to E+As destroy all
disk-like structures {and therefore necessarily lead to elliptical
formation}, 2} measure the inner color gradients and constrain the
spatial distribution of stars produced as gas sinks to the center
during a merger, and 3} determine whether these interactions produce
globular clusters in the required numbers to account for the increased
specific frequency of clusters in early-type galaxies.

STIS/CCD 9776

Black Holes in Big Galaxies with Small Bulges

In early-type galaxies the black hole {BH} mass is tightly correlated
with the bulge velocity dispersion. This correlation suggests that the
BH mass is determined by local processes in the central part of the
galaxy. However, the bulge dispersion in these galaxies is correlated
with the disk circular speed which in turn correlates with the
inferred halo circular speed {the "disk-halo conspiracy"}. For this
reason, existing data cannot decide whether the BH mass is set by the
bulge dispersion or the disk or halo circular speed. We propose to
break this degeneracy by weighing the BH in 3 Sc galaxies in which the
ratio of bulge circular speed to bulge velocity dispersion is large,
leading to large differences between BH masses predicted from these
quantities. These measurements will increase the number of carefully
studied Sc bulges from one to four and will determine whether the
masses of nuclear BHs are set by {presumably baryonic} processes in
galaxy bulges or by {presumably non-baryonic} processes in their dark
halos.

ACS/WFC/HRC 9771

The local Hubble flow and the density field within 6 Mpc

Great progress has been made recently in accurate distance
measurements of nearby galaxies beyond the Local Group based on the
luminosity of the tip of the red giant branch {TRGB}. Over the last
three years, snapshot surveys with HST have provided us with the TRGB
distances for more than a hundred nearby galaxies obtained with an
accuracy of about 10%. The local velocity field within 5 Mpc exhibits
a significant anisotropy which disagrees with a spherical
Virgo-centric flow. The local Hubble flow is very cold, with 1-D rms
deviations of ~30 km/s. Cosmological simulations with Cold Dark Matter
can only realize such low dispersions with a combination of a low mean
density of matter and a substantial component with negative pressure.
There may be a constraint on the equation of state w=-p/rho. Our
observations will concentrate on 116 galaxies whose expected distances
lie within 4 - 6 Mpc, allowing us to trace a Dark Matter distribution
in the Local Volume with twice the information currently available.
The program is a good one for SNAP mode because the order and rate
that the observations are made are not very important, as long as
there is good completion over several years.

ACS/HRC 9747

An Imaging Survey of the Statistical Frequency of Binaries Among
Exceptionally-Young Dynamical Families in the Main Asteroid Belt

We propose an ambitious SNAPSHOT program to determine the frequency of
binaries among two very young asteroid families in the Main Belt, with
potentially profound implications. These families {of C- and S-type}
have recently been discovered {Nesvorny et al. 2002, Nature 417, 720},
through dynamical modeling, to have been formed at 5.8 MY and 8.3 MY
ago in catastrophic impact events. This is the first time such
precise and young ages have been assigned to a family. Main-belt
binaries are almost certainly produced by collisions, and we would
expect a young family to have a significantly higher frequency of
binaries than the background, because they may not yet have been
destroyed by impact or longer-term gravitational instabilities. In
fact, one of the prime observables from such an event should be the
propensity for satellites. This is the best way that new numerical
models for binary production by collisions {motivated largely by our
ground-based discoveries of satellites among larger asteroids}, can be
validated and calibrated. We will also measure two control clusters,
one being an "old" family, and the other a collection of background
asteroids that do not have a family association, and further compare
with our determined value for the frequency of large main-belt
binaries {2%}. We request visits to 180 targets, using ACS/HRC.

ACS/WFC 9744

HST Imaging of Gravitational Lenses

Gravitational lenses offer unique opportunities to study cosmology,
dark matter, galactic structure, galaxy evolution and quasar host
galaxies. They are also the only sample of galaxies selected based on
their mass rather than their luminosity or surface brightness. While
gravitational lenses can be discovered with ground-based optical and
radio observations, converting them into astrophysical tools requires
HST. We will obtain ACS/WFC V and I images and NICMOS H images of 21
new lenses never observed by HST and NICMOS H images of 16 lenses
never observed by HST in the IR. As in previous cycles, we request
that the data be made public immediately.

STIS/MA1/MA2 9739

Are We Missing the Dominant Sites of Star Formation in Local UV-Bright
Starbursts?

We propose to explore the ages, extinctions, and masses of young
stellar clusters in four nearby dwarf starburst galaxies {He 2-10, NGC
5253, NGC 4214, and IIZw40}. We will combine available archival data
with new, high resolution HST observations from the ultraviolet to the
infrared. All four galaxies are known from ground based radio/infrared
observations to contain highly obscured, massive stellar clusters,
which dominate the far infrared flux. Despite the fact that almost all
of the infrared flux comes from regions which are obscured at UV and
optical wavelengths, these galaxies are consistent with the well known
correlation between the UV slope {beta} and the ratio of far infrared
flux to ultraviolet flux at 1600 Angstroms. Because the UV and IR
fluxes are decoupled, this observation implies that a simple
foreground screen model, where UV photons from hot stars are
reprocessed into the infrared by local dust, is not the proper
interpretation for why these galaxies follow the beta relation. We
propose to investigate the underlying mechanisms responsible for this
observed correlation in these UV bright galaxies, and explore the
implication for high redshift starbursts.

STIS/CCD/MA1 9724

Towards a global understanding of accretion physics - Clues from an UV
spectroscopic survey of cataclysmic variables

Accretion inflows and outflows are fundamental phenomena in a wide
variety of astrophysical environments, such as Young Stellar Objects,
galactic binaries, and AGN. Observationally, cataclysmic variables
{CVs} are particularly well suited for the study of accretion
processes. We are currently carrying out a Cycle 11 STIS UV
spectroscopic snapshot survey of CVs to fully exploit the diagnostic
potential of these objects for our understanding of accretion physics.
While the data obtained so far are of excellent quality, the number of
targets that will be observed in Cycle 11 is too small for a
statistically significant analysis {only 19 objects out of our 149
accepted Cycle 11 snapshot targets have been observed at the time of
writing}. We propose here to extend this survey into Cycle 12,
building a homogenous database of accretion disc and wind outflow
spectra covering a wide range of mass transfer rates and binary
inclinations. We will analyze these spectra with state-of-the-art
accretion disc model spectra {SYNDISK}, testing our current knowledge
of the accretion disc structure, and, thereby, providing new insight
into the so far not well understood process of viscous dissipation. We
will use our parameterised wind model PYTHON for the analysis of the
radiation driven accretion disc wind spectra, assessing the
fundamental question whether the mass loss rate correlates with the
disc luminosity. In addition, our survey data will identify a number
of systems in which the white dwarf significantly contributes to the
UV flux, permitting an analysis of the impact of mass accretion on the
evolution of these compact stars. This survey will triple the number
of currently available high-quality accretion disc / wind outflow /
accreting white dwarf spectra, and we waive our proprietary rights to
permit a timely use of this database.

ACS/WFC 9722

Life in the fast lane: The dark-matter distribution in the most
massive galaxy clusters in the Universe at z0.5

We propose two-filter ACS observations of a complete sample of 12 very
X-ray luminous galaxy clusters at 0.5z0.7 as a cornerstone of a
comprehensive multi-wavelength study of the properties of the most
massive clusters in the universe. Our sample includes the famous
systems Cl0016+16 and MS0451-03; all other clusters are new
discoveries from the MACS survey. Being the counterparts of the
best-studied systems at lower and higher redshift and comprising ALL
massive clusters at 0.5z0.7 observable from Mauna Kea this sample
will become the ultimate reference for cluster studies at z0.5. HST's
unique capabilities will allow us to: 1} measure accurately the
clusters' dark matter distribution on scales from tens to more than
500/h_50 kpc from observations of strong and weak gravitational
lensing, 2} use galaxy-galaxy lensing to measure the shape, extent,
and mass content of the dark-matter halos of both cluster and field
galaxies, and 3} study the color morphology of mergers and the star
formation history of galaxies in a high-density environment. The
proposed observations are complemented by Chandra observations of all
our targets {all 12 awarded, 11 executed to date} which provide
independent constraints on the dark matter and gas distribution in the
cluster cores, as well a by extensive groundbased observations of weak
lensing on yet larger scales, galaxy dynamics, and the SZ effect.

ACS/WFC 9701

ACS Default {Archival} Pure Parallel Program II

The proposal is designed to test ACS pure parallels in POMS.

STIS 9633

STIS parallel archive proposal - Nearby Galaxies - Imaging and
Spectroscopy

Using parallel opportunities with STIS which were not allocated by the
TAC, we propose to obtain deep STIS imagery with both the Clear
{50CCD} and Long-Pass {F28X50LP} filters in order to make
color-magnitude diagrams and luminosity functions for nearby galaxies.
For local group galaxies, we also include G750L slitless spectroscopy
to search for e.g., Carbon stars, late M giants and S-type stars. This
survey will be useful to study the star formation histories, chemical
evolution, and distances to these galaxies. These data will be placed
immediately into the Hubble Data Archive.

ACS/WFC 9575

Default {Archival} Pure Parallel Program.

The Advanced Camera for Surveys (WFC) was used to test ACS pure
parallels in POMS.

ACS/WFPC2 9488

Cosmic Shear - with ACS Pure Parallel Observations

The ACS, with greater sensitivity and sky coverage, will extend our
ability to measure the weak gravitational lensing of galaxy images
caused by the large scale distribution of dark matter. We propose to
use the ACS in pure parallel {non- proprietary} mode, following the
guidelines of the ACS Default Pure Parallel Program. Using the HST
Medium Deep Survey WFPC2 database we have measured cosmic shear at
arc-min angular scales. The MDS image parameters, in particular the
galaxy orientations and axis ratios, are such that any residual
corrections due to errors in the PSF or jitter are much smaller than
the measured signal. This situation is in stark contrast with
ground-based observations. We have also developed a statistical
analysis procedure to derive unbiased estimates of cosmic shear from a
large number of fields, each of which has a very small number of
galaxies. We have therefore set the stage for measurements with the
ACS at fainter apparent magnitudes and smaller, 10 arc-second scales
corresponding to larger cosmological distances. We will adapt existing
MDS WFPC2 maximum likelihood galaxy image analysis algorithms to work
with the ACS. The analysis would also yield an online database similar
to that in archive.stsci.edu/mds/

NIC1/NIC2/NIC3 9355

Test of Efficient Subsampling for NIC3 by Smearing Images of Jupiter

Several camera/filter combinations of HST do not sample the point
spread function with a sufficiently small sampling interval to
retrieve the full spatial resolution possible at the wavelength of the
filter. This is especially true for the NIC3 camera. Dithering
observations by sub-pixels is the standard solution. However, the
extra overhead time of dithering can be too long to make dithering
feasible for many solar system targets where rotation or relative
motion is noticeable during the overhead time. I suggest to test a new
method where a single exposure yields 13-22 dithered images which
provide sufficient subpixel information to recover the whole spatial
capabilities of HST. I suggest to test this method with Jupiter imaged
by six NIC3 filters. Still exposures in the same six filters of NIC1
or NIC2 will be added to provide the standard for comparison of
spatial resolution. The method lets Jupiter smear across NIC3 by about
4-6 pixels during the whole exposure by c hanging HST's tracking
rates. Each interval between readouts of NIC3 provides a dithered
image. It is difficult to predict how well the reduced NIC3 images
will compare with the still NIC1 and NIC2 images with respect to
spatial resolution, but one orbit of HST can test the method. If this
method works well, it could be applied to many other future
observations.

NIC1/NIC2/NIC3 8792

NICMOS Post-SAA calibration - CR Persistence Part 3

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be
non-standard reference files available to users with a USEAFTER
date/time mark. The keyword 'USEAFTER=date/time' will also be added to
the header of each POST-SAA DARK frame. The keyword must be populated
with the time, in addition to the date, because HST crosses the SAA ~8
times per day so each POST-SAA DARK will need to have the appropriate
time specified, for users to identify the ones they need. Both the raw
and processed images will be archived as POST-SAA DARKSs. Generally we
expect that all NICMOS science/calibration observations started within
50 minutes of leaving an SAA will need such maps to remove the CR
persistence from the science images. Each observation will need its
own CRMAP, as different SAA passages leave different imprints on the
NICMOS detectors.

WFPC2 10090

WFII backup parallel archive proposal

This is a POMS test proposal designed to simulate scientific plans.

STIS/CCD 10085

STIS Pure Parallel Imaging Program: Cycle 12

This is the default archival pure parallel program for STIS during
cycle 12.

WFPC2 10084

WFII parallel archive proposal

This is the generic target version of the WFPC2 Archival Pure Parallel
program. The program will be used to take parallel images of random
areas of the sky, following the recommendations of the 2002 Parallels
Working Group.

WFPC2 10070

WFPC2 CYCLE 12 Supplemental Darks Part 2/3

This dark calibration program obtains 3 dark frames every day to
provide data for monitoring and characterizing the evolution of hot
pixels.

ACS/HRC/WFC 10059

CCD Daily Monitor

This program consists of basic tests to monitor, the read noise, the
development of hot pixels and test for any source of noise in ACS CCD
detectors. This programme will be executed once a day for the entire
lifetime of ACS.

ACS/WFC 10046

CCD Hot Pixel Annealing

Hot pixel annealing will be performed once every 4 weeks. The CCD TECs
will be turned off and heaters will be activated to bring the detector
temperatures to about +20C. This state will be held for approximately
12 hours, after which the heaters are turned off, the TECs turned on,
and the CCDs returned to normal operating condition. To assess the
effectiveness of this procedure, a bias and two dark images will be
taken after the annealing procedure for both WFC and HRC. The HRC
darks are taken in parallel with the WFC darks.

STIS/CCD 10022

STIS CCD Hot Pixel Annealing Cycle 12

The effectiveness of the CCD hot pixel annealing process is assessed
by measuring the dark current behavior before and after annealing and
by searching for any window contamination effects. In addition CTE
performance is examined by looking for traps in a low signal level
flat. Follows on from proposal 9612.

STIS/CCD 10020

CCD Bias Monitor - Part 2

Monitor the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1,
and 1x1 at gain = 4, to build up high-S/N superbiases and track the
evolution of hot columns.

STIS/CCD 10018

CCD Dark Monitor-Part 2

Monitor the darks for the STIS CCD.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.) None

COMPLETED OPS REQs:
17109-2 Genslew Request for Proposal 9475 (Slot#6)@086/1713z
17110-0 Genslew Request for Proposal 9475 (Slot#7)@086/1715z
17111-0 Genslew Request for Proposal 9475 (Slot#8)@086/1716z
17112-0 Genslew Request for Proposal 9475 (Slot#9)@086/1717z
17113-0 Genslew Request for Proposal 9475 (Slot#10)@086/1718z

OPS NOTES EXECUTED:
1208-1 Adjust ACS Error Count Limit (Closed) @086/1308z
1188-0 Unknown FMT ID @087/2006z (MARREAC required)

SCHEDULED SUCCESSFUL FAILURE TIMES
FGS GSacq 26 26
FGS REacq 21 21
FHST Update 55 55
LOSS of LOCK


SIGNIFICANT EVENTS:

Conduct Readiness Review at 089/18:00Z for Battery 2, Two-stage
Battery Capacity testing. Testing scheduled to begin ~ 090/03:00Z (OR
17107 with attached script). Initiate continuous engineering data
recording periods, the first period starts at 090/03:03Z and the last
period ends at 093/01:00Z. A number of gaps in continuous engineering
data recording were planned to allow playback of the data and to
prevent any overflows of the recorder. Efforts were made to match
these gaps to known times of TDRS return contacts.

HST-SIMSS Release 1.0 Interface Checkout with SOCPSS to support JIS
configuration scheduled 089/12:00Z - 20:00Z with GDOC, SOC, HITT, and
CCS using CCS "B" String with CCS Release 4.0.3.1 and PRD O06300T.
The purpose of this testing is to verify the capability of HST-SIMSS
Release 1.0 interface to support a JIS configuration.


Ads
 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Monitoring NASA Daily ISS Report JimO Space Station 2 June 1st 04 10:33 PM
JimO Speaks on 'Daily Planet' re Hubble JimO Policy 0 February 11th 04 11:53 PM
Spirit's daily activities schedule? Matti Anttila Policy 0 January 15th 04 09:39 AM
best site for daily schedule of rover activity? bob History 2 January 5th 04 01:16 PM
Investor's Business Daily: Rethinking NASA dougk Policy 1 August 28th 03 12:07 AM


All times are GMT +1. The time now is 03:12 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2021, Jelsoft Enterprises Ltd.
Copyright 2004-2021 SpaceBanter.com.
The comments are property of their posters.