A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily 3834



 
 
Thread Tools Display Modes
  #1  
Old April 8th 05, 06:02 PM
external usenet poster
 
Posts: n/a
Default Daily 3834

HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

DAILY REPORT # 3834

PERIOD COVERED: DOY 97

OBSERVATIONS SCHEDULED

ACS/HRC 10130

Systemic Proper Motions of the Magellanic Clouds from Astrometry with
ACS: II. Second Epoch Images

We request second epoch observations with ACS of Magellanic Cloud
fields centered on the 40 quasars in the LMC and SMC for which we have
first epoch Cycle 11 data. The new data will determine the systemic
proper motion of the Clouds. An extensive astrometric analysis of the
first epoch data shows that follow-up observations with a two year
baseline will allow us to measure the proper motion of the clouds to
within 0.022 mas/year in each of the two orthogonal directions
{assuming that we can image 25 quasars, i.e., with a realistic
Snapshot Program completion rate}. The best weighted combination of
all previous measurements has a seven times larger error than what we
expect. We will determine the proper motion of the clouds with 2%
accuracy. When combined with HI data for the Magellanic Stream this
will constrain both the mass distribution in the Galactic Halo and
theoretical models for the origin of the Magellanic Stream. Previous
measurements are too crude for such constraints. Our data will provide
by far the most accurate proper motion measurement for any Milky Way
satellite.

ACS/WFC 10187

Direct imaging of the progenitors of massive, core-collapse supernovae

Modern supernovae searches in the nearby Universe are discovering
large numbers of SNe which have massive star progenitors {Types II, Ib
and Ic}. The extensive HST image archives of galaxies within ~20Mpc
enables their individual bright stellar content to be resolved. As
massive, evolved stars are the most luminous single objects in a
galaxy, the progenitors of core-collapse SNe should be directly
detectable on pre- explosion images. In our ongoing HST programme we
have detected the first red supergiant progenitor of a normal type II
supernova, shown that SN 1993J came from a binary system, and set
direct mass-limits on three other type II supernovae progenitors.
These discoveries are providing strong constraints on theoretical
models of pre- supernova stellar evolution that predict which stars
produce which type of supernovae. We request time to continue this
successful project, and require ACS observations of future SNe which
are discovered in galaxies closer than 20Mpc which have pre-explosion
HST archive images available. These observations will allow the SNe to
be precisely positioned on the pre-explosion frames with the required
astrometric accuracy of around 0.05", and provide 3-colour photometry
of the surrounding stellar populations for reddening estimations. The
goal of this project is to directly identify the progenitor stars of
core-collapse supernovae. We will compare the results to our own
stellar evolutionary tracks in order to determine masses or
restrictive mass-limits for the progenitors.

ACS/WFC/NIC/NIC3/WFPC 10246 2 The HST survey of the Orion Nebula
Cluster

We propose a Treasury Program of 104 HST orbits to perform the
definitive study of the Orion Nebula Cluster, the Rosetta stone of
star formation. We will cover with unprecedented sensitivity {23-25
mag}, dynamic range {~12 mag}, spatial resolution {50mas}, and
simultaneous spectral coverage {5 bands} a ~450 square arcmin field
centered on the Trapezium stars. This represents a tremendous gain
over the shallow WFC1 study made in 1991 with the aberrated HST on an
area ~15 times smaller. We maximize the HST observing efficiency using
ACS/WFC and WFPC2 in parallel with two opposite roll angles, to cover
the same total field. We will assemble the richest, most accurate and
unbiased HR diagram for pre-main-sequence objects ever made. Combined
with the optical spectroscopy already available for ~1000 sources and
new deep near-IR imaging and spectroscopy {that we propose as Joint
HST-NOAO observations}, we will be able to attack and possibly solve
the most compelling questions on stellar evolution: the calibration of
pre-main-sequence evolutionary tracks, mass segration and the
variation of the initial mass function in different environments, the
evolution of mass accretion rates vs. age and environment, disk
dissipation in environments dominated by hard vs. soft-UV radiation,
stellar multiplicity vs. disk fraction. In addition, we expect to
discover and classify an unknown, but substantial, population of
pre-Main Sequence binaries, low mass stars and brown dwarfs down to
~10 MJup. This is also the best possible way to discover dark
silhouette disks in the outskirts of the Orion Nebula and study their
evolutionary status through multicolor imaging. This program is timely
and extremely well leveraged to other programs targeting Orion: the
ACS H-alpha survey of the Orion Nebula, the recently completed 850ks
ultradeep Chandra survey, the large GTO programs to be performed with
SIRTF, plus the availability of 2MASS and various deep JHK surveys of
the core recently done with 8m class telescopes.

ACS/WFC/WFPC2 10402

The Formation and Evolution of Spirals: An ACS and WFPC2 Imaging
Survey of Nearby Galaxies

Over 50% of galaxies in the local universe are spirals. Yet the star
formation histories and evolution of this crucial population remain
poorly understood. We propose to combine archival data with new
ACS/WFC and WFPC2 observations of 11 galaxies, to tackle a
comprehensive investigation of nearby spirals covering the entire
spiral sequence. The new observations will fill a serious deficiency
in HST's legacy, and maximize the scientific return of existing HST
data. The filter combination of UBVI, and Halpha is ideal for studying
stellar populations, dust properties, and the ISM. Our immediate
scientific objectives a {i} to use the resolved cluster
populations, both young massive clusters and ancient globular clusters
as a chronometer, to understand how spirals assembled as a function of
time; {ii} study the rapid disruption properties of young clusters;
and {iii} understand dust distributions in spirals from pc to kpc
scales. Each of these goals provides an important step towards
charting the evolution of galaxies, and an essential baseline for
interpreting the galaxy populations being surveyed in both the early
and present universe. The resolution of our survey, which exploits the
excellent imaging capabilities of HST's two optical cameras, will
enable us to understand the record of star cluster, and galaxy
formation in a level of detail which is not possible for more distant
systems. Finally, the proposed observations will provide a key to
interpret an extensive, multiwavelength archive of space- and ground-
based data at lower spatial resolution {SPITZER, CHANDRA, GALEX,
NICMOS P alpha and H band imaging} for local spirals.

ACS/WFC/WFPC2 10424

The White Dwarf Cooling Age and Dynamical History of the Metal-Poor
Globular Cluster NGC 6397

We propose to determine the white dwarf cooling age in the nearest
metal-poor {[Fe/H]=- 2} globular cluster, NGC 6397. This globular
cluster provides the best opportunity to test the white dwarf cooling
age in such a metal-poor system and at the same time provide a
comparison with the more metal-rich cluster {M4} which we recently
successfully observed with HST. Any {or even no} age difference
between these clusters will be important in understanding the
age-metallicity relation for these systems which reflects the star
formation history in the early Galaxy. The absolute age is an
important cosmological constraint. We expect to be able to detect age
DIFFERENCES between these clusters at the 0.5 Gyr level and absolute
ages should be accurate to 1.0 Gyr. In addition, and in contrast with
M4, NGC 6397 is highly dynamically evolved, has a collapsed core, and
the distribution of its white dwarfs throughout the cluster have
almost certainly been modified by dynamical processes. We are using
N-body simulations specifically developed for this cluster to
understand these modifications and to include their effects in our
measurement of the white dwarf luminosity function and cooling age.
Among the dynamical questions we expect to answer with this proposal
a 1} what was the primordial binary frequency in NGC 6397? 2} can
we explain the high central concentration with a population of massive
white dwarfs and/or neutron stars? 3} do we see sufficient central
binaries to reverse the core collapse of the cluster?

NIC1/NIC2/NIC3 8792

NICMOS Post-SAA calibration - CR Persistence Part 3

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be
non-standard reference files available to users with a USEAFTER
date/time mark. The keyword 'USEAFTER=date/time' will also be added to
the header of each POST-SAA DARK frame. The keyword must be populated
with the time, in addition to the date, because HST crosses the SAA ~8
times per day so each POST-SAA DARK will need to have the appropriate
time specified, for users to identify the ones they need. Both the raw
and processed images will be archived as POST-SAA DARKSs. Generally we
expect that all NICMOS science/calibration observations started within
50 minutes of leaving an SAA will need such maps to remove the CR
persistence from the science images. Each observation will need its
own CRMAP, as different SAA passages leave different imprints on the
NICMOS detectors.

NIC2 10176

Coronagraphic Survey for Giant Planets Around Nearby Young Stars

A systematic imaging search for extra-solar Jovian planets is now
possible thanks to recent progress in identifying "young stars near
Earth". For most of the proposed young {~ 30 Myrs} and nearby {~ 60
pc} targets, we can detect a few Jupiter-mass planets as close as a
few tens of AUs from the primary stars. This represents the first time
that potential analogs of our solar system - that is planetary systems
with giant planets having semi-major axes comparable to those of the
four giant planets of the Solar System - come within the grasp of
existing instrumentation. Our proposed targets have not been observed
for planets with the Hubble Space Telescope previously. Considering
the very successful earlier NICMOS observations of low mass brown
dwarfs and planetary disks among members of the TW Hydrae Association,
a fair fraction of our targets should also turn out to posses low mass
brown dwarfs, giant planets, or dusty planetary disks because our
targets are similar to {or even better than} the TW Hydrae stars in
terms of youth and proximity to Earth. Should HST time be awarded and
planetary mass candidates be found, proper motion follow-up of
candidate planets will be done with ground-based AOs.

WFPC2 10170

Atmospheric Variability on Uranus and Neptune

We propose Snapshot observations of Uranus and Neptune to monitor
changes in their atmospheres on time scales of weeks, months, and
years. Uranus is rapidly approaching equinox in 2007, with another 4
degrees of latitude becoming visible every year. Recent HST
observations during this epoch {including 6818: Hammel, Lockwood, and
Rages; 7885: Hammel, Karkoschka, and Marley; 8680: Hammel, Rages,
Lockwood, and Marley; and 8634: Rages, Hammel, Lockwood, Marley, and
McKay} have revealed strongly wavelength-dependent latitudinal
structure and the presence of numerous visible-wavelength cloud
features in the northern hemisphere. Long-term ground-based
observations {Lockwood and Thompson 1999} show seasonal brightness
changes whose origins are not well understood. Recent near-IR images
of Neptune obtained using adaptive optics on the Keck Telescope
together with images from our Cycle 9 Snapshot program {8634} show a
general increase in activity at south temperate latitudes as well as
the possible development of another Great Dark Spot. Further Snapshot
observations of these two dynamic planets will elucidate the nature of
long-term changes in their zonal atmospheric bands and clarify the
processes of formation, evolution, and dissipation of discrete albedo
features.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.) None


COMPLETED OPS REQs: None

OPS NOTES EXECUTED:
1326-0 Restore Trickle Charge Elapse Timer Limit @ 097/1400Z

SCHEDULED SUCCESSFUL FAILURE TIMES
FGS Gsacq 12 12
FGS Reacq 04 04
FHST Update 16 16
LOSS of LOCK


SIGNIFICANT EVENTS: None



 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
EVOLUTION DEAD AT AGE 126 -- R.I.P. Ed Conrad Astronomy Misc 4 August 21st 04 12:01 AM
Monitoring NASA Daily ISS Report JimO Space Station 2 June 1st 04 10:33 PM
Monitoring NASA Daily ISS Report JimO History 2 June 1st 04 10:33 PM
Spirit's daily activities schedule? Matti Anttila Policy 0 January 15th 04 08:39 AM
best site for daily schedule of rover activity? bob History 2 January 5th 04 12:16 PM


All times are GMT +1. The time now is 06:04 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.