A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily 3468



 
 
Thread Tools Display Modes
  #1  
Old October 15th 03, 05:19 PM
external usenet poster
 
Posts: n/a
Default Daily 3468

HUBBLE SPACE TELESCOPE

DAILY REPORT # 3468

PERIOD COVERED: DOY 287

OBSERVATIONS SCHEDULED

ACS 9984

Cosmic Shear With ACS Pure Parallels

Small distortions in the shapes of background galaxies by foreground
mass provide a powerful method of directly measuring the amount and
distribution of dark matter. Several groups have recently detected
this weak lensing by large-scale structure, also called cosmic shear.
The high resolution and sensitivity of HST/ACS provide a unique
opportunity to measure cosmic shear accurately on small scales. Using
260 parallel orbits in Sloan textiti {F775W} we will measure for the
first time: beginlistosetlength sep0cm setlengthemsep0cm setlength
opsep0cm em the cosmic shear variance on scales 0.7 arcmin, em the
skewness of the shear distribution, and em the magnification effect.
endlist Our measurements will determine the amplitude of the mass
power spectrum sigma_8Omega_m^0.5, with signal-to-noise {s/n} ~ 20,
and the mass density Omega_m with s/n=4. They will be done at small
angular scales where non-linear effects dominate the power spectrum,
providing a test of the gravitational instability paradigm for
structure formation. Measurements on these scales are not possible
from the ground, because of the systematic effects induced by PSF
smearing from seeing. Having many independent lines of sight reduces
the uncertainty due to cosmic variance, making parallel observations
ideal.

ACS/CCD/WFC 9978

The Ultra Deep Field with ACS

The ACS Ultra Deep Field {UDF} is a survey carried out by using
Director's Discretionary time. The main science driver are galaxy
evolution and cosmology. The primary instrument is the Advanced Camera
for Surveys but WFPC2 and NICMOS will also be used in parallel. The
data will be made public. The UDF consists of a single ultra-deep
field {410 orbits in total} within the CDF-S GOODS area. The survey
will use four filters: F435W {55 orbits}, F606W {55 orbits}, F775W
{150 orbits}, and F850LP {150 orbits}. The F435W {B} and F606W {V}
exposures will be one magnitude deeper than the equivalent HDF
filters. The F775W {I} exposure will be 1.5 magnitude deeper than the
equivalent HDF exposure. The depth in F775W and F850LP is optimized
for searching very red objects - like z=6 galaxies - at the detection
limit of the F850LP image. The pointing will be RA{J2000}=3 32 40.0
and Decl.{J2000}=-27 48 00. These coordinates may change slightly due
to guide star availability and implementation issues. We will attempt
to include in the field both a spectroscopically confirmed z=5.8
galaxy and a spectroscopically confirmed type Ia SN at z=1.3. The
pointing avoids the gaps with the lowest effective exposure on the
Chandra ACIS image of CDFS. This basic structure of the survey
represents a consensus recommendation of a Scientific Advisory
Committee to the STScI Director Steven Beckwith. A local Working Group
is looking in detail at the implementation of the survey.

ACS/HRC/WFC 10042

CCD Daily Monitor

This program consists of basic tests to monitor, the read noise, the
development of hot pixels and test for any source of noise in ACS CCD
detectors. This programme will be executed once a day for the entire
lifetime of ACS.

ACS/HRC/WFC 10044

ACS internal CTE monitor

The charge transfer efficiency {CTE} of the ACS CCD detectors will
decline as damage due to on-orbit radiation exposure accumulates. This
degradation will be closely monitored at regular intervals, because it
is likely to determine the useful lifetime of the CCDs. All the data
for this program is acquired using internal targets {lamps} only, so
all of the exposures should be taken during Earth occultation time
{but not during SAA passages}. This program emulates the ACS
pre-flight ground calibration and post-launch SMOV testing {program
8948}, so that results from each epoch can be directly compared.
Extended Pixel Edge Response {EPER} and First Pixel Response {FPR}
data will be obtained over a range of signal levels for both the Wide
Field Channel {WFC}, and the High Resolution Channel {HRC}.

ACS/SBC 10047

ACS UV Contamination Monitor

A standard star field {NGC6681} is observed every three months,
alternating between after and before annealing operations, through all
the ACS broad band UV filters. NGC6681 hosts several UV spectro -
photometric standard stars for which accurate spectra have been {and
will continue to be} measured with STIS. Two SBC dark current
exposures taken as the last exposure of each SBC sequence. Also, to
minimize SBS turn-on/turn-off cycles and in order to check the lab
flats for the SBC detector, internal observations using the deuterium
lamp with F125LP are being taken inflight, following the UV monitor
observations. The internal flats have been taken ~monthly since SMOV,
and the degradation of the lamp has been monitored. The total exposure
time to date is ~15 hours giving a total of 8600 counts/pixel. The
goal is 10, 000 counts/pixel such that the resulting pipeline flat has
uncertainties of ~1% due to poisson counting statistics. Thus,
approximately 3 additional hours of observation are required.

ACS/WFC 9744

HST Imaging of Gravitational Lenses

Gravitational lenses offer unique opportunities to study cosmology,
dark matter, galactic structure, galaxy evolution and quasar host
galaxies. They are also the only sample of galaxies selected based on
their mass rather than their luminosity or surface brightness. While
gravitational lenses can be discovered with ground-based optical and
radio observations, converting them into astrophysical tools requires
HST. HST has demonstrated that it is the only telescope that can in
each case precisely locate the lens galaxy, measure its luminosity,
color and structure, and search for lensed images of the source host
galaxy given the typical image separations of ~1''. We will obtain
ACS/WFC V and I images and NICMOS H images of 21 new lenses never
observed by HST and NICMOS H images of 16 lenses never observed by HST
in the IR. As in previous cycles, we request that the data be made
public immediately.

ACS/WFPC2 9488

Cosmic Shear - with ACS Pure Parallel Observations

The ACS, with greater sensitivity and sky coverage, will extend our
ability to measure the weak gravitational lensing of galaxy images
caused by the large scale distribution of dark matter. We propose to
use the ACS in pure parallel {non- proprietary} mode, following the
guidelines of the ACS Default Pure Parallel Program. Using the HST
Medium Deep Survey WFPC2 database we have measured cosmic shear at
arc-min angular scales. The MDS image parameters, in particular the
galaxy orientations and axis ratios, are such that any residual
corrections due to errors in the PSF or jitter are much smaller than
the measured signal. This situation is in stark contrast with
ground-based observations. We have also developed a statistical
analysis procedure to derive unbiased estimates of cosmic shear from a
large number of fields, each of which has a very small number of
galaxies. We have therefore set the stage for measurements with the
ACS at fainter apparent magnitudes and smaller, 10 arc-second scales
corresponding to larger cosmological distances. We will adapt existing
MDS WFPC2 maximum likelihood galaxy image analysis algorithms to work
with the ACS. The analysis would also yield an online database similar
to that in archive.stsci.edu/mds/

FGS 10011

Monitoring FGS1r's Interferometric Response as a Function of Spectral
Color

This proposal obtains reference point source Transfer Functions
{S-Curves} for FGS1r through the F583W filter and the F5ND attenuator
at the center position of the FGS1r FOV for a variety of stars of
different spectral types. These Transfer Functions are needed to
support the analysis of GO science data for the study of close and
wide binary star systems and for determining the angular size and
shape of extended sources. This proposal observes stars that have been
observed in previous cycles to monitor the long term evolution of the
FGS1r S-curves. This proposal also {1} monitors the FGS1r Lateral
Color response {using stars Latcol-A and Latcol-B}, {2} calibrates the
"Pos/Trans" bias of a star's position as determined from Transfer mode
and Position mode observations, and {3} calibrates the shift of a
star's centroid when observed with F5ND relative to that when observed
with F583W.

NIC/NIC3 9865

The NICMOS Parallel Observing Program

We propose to continue managing the NICMOS pure parallel program.
Based on our experience, we are well prepared to make optimal use of
the parallel opportunities. The improved sensitivity and efficiency of
our observations will substantially increase the number of
line-emitting galaxies detected. As our previous work has
demonstrated, the most frequently detected line is Halpha at
0.7z1.9, which provides an excellent measure of current star
formation rate. We will also detect star-forming and active galaxies
in other redshift ranges using other emission lines. The grism
observations will produce by far the best available Halpha luminosity
functions over the crucial--but poorly observed--redshift range where
galaxies appear to have assembled most of their stellar mass. This key
process of galaxy evolution needs to be studied with IR data; we found
that observations at shorter wavelengths appear to have missed a large
fraction of the star-formation in galaxies, due to dust reddening. We
will also obtain deep F110W and F160W images, to examine the space
densities and morphologies of faint red galaxies. In addition to
carrying out the public parallels, we will make the fully reduced and
calibrated images and spectra available on-line, with some
ground-based data for the deepest parallel fields included.

NIC1/NIC2/NIC3 8792

NICMOS Post-SAA calibration - CR Persistence Part 3

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be
non-standard reference files available to users with a USEAFTER
date/time mark. The keyword 'USEAFTER=date/time' will also be added to
the header of each POST-SAA DARK frame. The keyword must be populated
with the time, in addition to the date, because HST crosses the SAA ~8
times per day so each POST-SAA DARK will need to have the appropriate
time specified, for users to identify the ones they need. Both the raw
and processed images will be archived as POST-SAA DARKSs. Generally we
expect that all NICMOS science/calibration observations started within
50 minutes of leaving an SAA will need such maps to remove the CR
persistence from the science images. Each observation will need its
own CRMAP, as different SAA passages leave different imprints on the
NICMOS detectors.

NIC3 9979

The Ultra Deep Field - NICMOS Parallels

This is a plan to manage the NICMOS pure parallels of the ACS Ultra
Deep Survey. We will obtain a mix of F110W and F160W images along
sight-lines within the mosaiced ACS fields of the CDF-S GOODS and GEMS
surveys, with these sight-lines enabling an examination of the space
density and morphologies of the reddest galaxies.

STIS 9383

Probing the Grains Responsible for Extinction Using Small Magellanic
Cloud Sightlines

Small Magellanic Cloud sightlines have the greatest potential to
relate specific interstellar extinction features to distinct grain
properties. The reasons for this are 1} prominent extinction features
such as the 2175 Angstrom bump and the far-ultraviolet rise vary among
SMC targets and 2} grain types may be very different from those in the
Galaxy. Specifically, Welty et al. {2001} recently identified an SMC
sightline that contains dust, but no silicate grains. Silicates are a
dominant source of extinction in all dust models; the SMC may be the
only location where the importance of silicates can be verified or
disproved. We propose to explore the relationship between grain types
and extinction toward 2 SMC stars with very different extinction
curves; AzV 18 lacks a 2175 Angstrom bump and has a strong far-UV rise
while the extinction curve towards the SMC star AzV 456 has a
prominent 2175 Angstrom bump and a much weaker far-UV rise. We will
compare the interstellar abundances of atoms that are prevalent in
silicates {Si, Mg, Fe} toward these 2 stars and use the results to
constrain dust extinction models. These SMC observations, which can
only be obtained with STIS, are the only direct way to probe the
connection between grain types/environments and extinction. The
results from this study will be useful for modeling and understanding
all regions that contain dust {AGN, circumstellar disks, star
formation regions, etc.}.

STIS 9786

The Next Generation Spectral Library

We propose to continue the Cycle 10 snapshot program to produce a Next
Generation Spectral Library of 600 stars for use in modeling the
integrated light of galaxies and clusters. This program is using the
low dispersion UV and optical gratings of STIS. The library will be
roughly equally divided among four metallicities, very low {[Fe/H] lt
-1.5}, low {[Fe/H] -1.5 to -0.5}, near-solar {[Fe/H] -0.3 to 0.1}, and
super-solar {[Fe/H] gt 0.2}, well-sampling the entire HR-diagram in
each bin. Such a library will surpass all extant compilations and have
lasting archival value, well into the Next Generation Space Telescope
era. Because of the universal utility and community-broad nature of
this venture, we waive the entire proprietary period.

STIS/CCD 10000

STIS Pure Parallel Imaging Program: Cycle 12

This is the default archival pure parallel program for STIS during
cycle 12.

STIS/CCD 10017

CCD Dark Monitor-Part 1

Monitor the darks for the STIS CCD.

STIS/CCD 10019

CCD Bias Monitor - Part 1

Monitor the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1,
and 1x1 at gain = 4, to build up high-S/N superbiases and track the
evolution of hot columns.

STIS/CCD 9981

The Ultra Deep Field - STIS parallels

We propose to obtain slitless spectroscopy of objects in the GEMS and
GOODS area around the UDF.

WFPC2 10069

WFPC2 CYCLE 12 Supplemental Darks, Part 1/3

This dark calibration program obtains 3 dark frames every day to
provide data for monitoring and characterizing the evolution of hot
pixels.

WFPC2 10072

WFPC2 CYCLE 12 INTERNAL MONITOR

This calibration proposal is the Cycle 12 routine internal monitor for
WFPC2, to be run weekly to monitor the health of the cameras. A
variety of internal exposures are obtained in order to provide a
monitor of the integrity of the CCD camera electronics in both bays
{gain 7 and gain 15}, a test for quantum efficiency in the CCDs, and a
monitor for possible buildup of contaminants on the CCD windows.

WFPC2 9709

POMS Test Proposal: WFII parallel archive proposal

This is the generic target version of the WFPC2 Archival Pure Parallel
program. The program will be used to take parallel images of random
areas of the sky, following the recommendations of the 2002 Parallels
Working Group.

WFPC2 9980

The Ultra Deep Field - WFPC2 Parallels

The ACS Ultra Deep Field {UDF} is a survey carried out by using
Director's Discretionary time. The main science drivers are galaxy
evolution and cosmology. The primary instrument is the Advanced Camera
for Surveys but WFPC2, NICMOS, and STIS will also be used in pure
parallel mode. The data will be made public. The UDF consists of a
single ultra-deep field {410 orbits in total} within the CDF-S GOODS
area. We request a modification of the default pure parallel programs.
Rather than duplicate the redder bands which will be done much better
with ACS, we propose to observe in the near-ultraviolet F300W filter.
These data will enable study of the rest-frame ultraviolet morphology
of galaxies at 0z1, allowing determination of the morphological
k-correction and the location of star formation within galaxies, using
a sample that is likely to be nearly complete with multi-wavelength
photometry and spectroscopic redshifts. The results can be used to
interpret observations of higher redshift galaxies by ACS.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.) None

COMPLETED OPS REQs: None

OPS NOTES EXECUTED: None

SCHEDULED SUCCESSFUL FAILURE TIMES
FGS GSacq 8 8
FGS REacq 5 5
FHST Update 11 11
LOSS of LOCK


SIGNIFICANT EVENTS: None


 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Monitoring NASA Daily ISS Report JimO Space Station 2 June 1st 04 10:33 PM
JimO Speaks on 'Daily Planet' re Hubble JimO Policy 0 February 11th 04 11:53 PM
Spirit's daily activities schedule? Matti Anttila Policy 0 January 15th 04 09:39 AM
best site for daily schedule of rover activity? bob History 2 January 5th 04 01:16 PM
Investor's Business Daily: Rethinking NASA dougk Policy 1 August 28th 03 12:07 AM


All times are GMT +1. The time now is 12:16 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.