A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily Report 5046



 
 
Thread Tools Display Modes
  #1  
Old March 5th 10, 07:03 PM posted to sci.astro.hubble
Cooper, Joe
external usenet poster
 
Posts: 568
Default Daily Report 5046

HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science

DAILY REPORT #5046

PERIOD COVERED: 5am March 4 - 5am March 5, 2010 (DOY 063/10:00z-064/10:00z)

OBSERVATIONS SCHEDULED

COS/FUV/STIS/CCD/MA1 11592

Testing the Origin(s) of the Highly Ionized High-Velocity Clouds: A
Survey of Galactic Halo Stars at z3 kpc

Cosmological simulation predicts that highly ionized gas plays an
important role in the formation and evolution of galaxies and their
interplay with the intergalactic medium. The NASA HST and FUSE
missions have revealed high-velocity CIV and OVI absorption along
extragalactic sightlines through the Galactic halo. These highly
ionized high-velocity clouds (HVCs) could cover 85% of the sky and
have a detection rate higher than the HI HVCs. Two competing, equally
exciting, theories may explain the origin of these highly ionized
HVCs: 1) the "Galactic" theory, where the HVCs are the result of
feedback processes and trace the disk-halo mass exchange, perhaps
including the accretion of matter condensing from an extended corona;
2) the "Local Group" theory, where they are part of the local warm-hot
intergalactic medium, representing some of the missing baryonic matter
of the Universe. Only direct distance determinations can discriminate
between these models. Our group has found that some of these highly
ionized HVCs have a Galactic origin, based on STIS observations of one
star at z5.3 kpc. We propose an HST FUV spectral survey to search for
and characterize the high velocity NV, CIV, and SiIV interstellar
absorption toward 24 stars at much larger distances than any previous
searches (4d21 kpc, 3|z|13 kpc). COS will provide atomic to highly
ionized species (e.g.,OI, CII, CIV, SiIV) that can be observed at
sufficient resolution (R~22, 000) to not only detect these highly
ionized HVCs but also to model their properties and understand their
physics and origins. This survey is only possible because of the high
sensitivity of COS in the FUV spectral range.

STIS/CCD 11844

CCD Dark Monitor Part 1

The purpose of this proposal is to monitor the darks for the STIS CCD.

STIS/CCD 11846

CCD Bias Monitor-Part 1

The purpose of this proposal is to monitor the bias in the 1x1, 1x2,
2x1, and 2x2 bin settings at gain=1, and 1x1 at gain = 4, to build up
high-S/N superbiases and track the evolution of hot columns.

STIS/CCD/FGS 11848

CCD Read Noise Monitor

This proposal measures the read noise of all the amplifiers (A, B, C,
D) on the STIS CCD using pairs of bias frames. Full-frame and binned
observations are made in both Gain 1 and Gain 4, with binning factors
of 1x1, 1x2, 2x1, and 2x2. All exposures are internals. Pairs of
visits are scheduled monthly for the first four months and then
bi-monthly after that.

STIS/CCD/MA2 11568

A SNAPSHOT Survey of the Local Interstellar Medium: New NUV
Observations of Stars with Archived FUV Observations

We propose to obtain high-resolution STIS E230H SNAP observations of
MgII and FeII interstellar absorption lines toward stars within 100
parsecs that already have moderate or high-resolution far-UV (FUV),
900-1700 A, observations available in the MAST Archive. Fundamental
properties, such as temperature, turbulence, ionization, abundances,
and depletions of gas in the local interstellar medium (LISM) can be
measured by coupling such observations. Due to the wide spectral range
of STIS, observations to study nearby stars also contain important
data about the LISM embedded within their spectra. However, unlocking
this information from the intrinsically broad and often saturated FUV
absorption lines of low-mass ions, (DI, CII, NI, OI), requires first
understanding the kinematic structure of the gas along the line of
sight. This can be achieved with high resolution spectra of high-mass
ions, (FeII, MgII), which have narrow absorption lines, and can
resolve each individual velocity component (interstellar cloud). By
obtaining short (~10 minute) E230H observations of FeII and MgII, for
stars that already have moderate or high- resolution FUV spectra, we
can increase the sample of LISM measurements, and thereby expand our
knowledge of the physical properties of the gas in our galactic
neighborhood. STIS is the only instrument capable of obtaining the
required high resolution data now or in the foreseeable future.

WFC3/ACS/IR 11677

Is 47 Tuc Young? Measuring its White Dwarf Cooling Age and Completing
a Hubble Legacy

With this proposal we will firmly establish the age of 47 Tuc from its
cooling white dwarfs. 47 Tuc is the nearest and least reddened of the
metal-rich disk globular clusters. It is also the template used for
studying the giant branches of nearby resolved galaxies. In addition,
the age sensitive magnitude spread between the main sequence turnoff
and horizontal branch is identical for 47 Tuc, two bulge globular
clusters and the bulge field population. A precise relative age
constraint for 47 Tuc, compared to the halo clusters M4 and NGC 6397,
both of which we recently dated via white dwarf cooling, would
therefore constrain when the bulge formed relative to the old halo
globular clusters. Of particular interest is that with the higher
quality ACS data on NGC 6397, we are now capable with the technique of
white dwarf cooling of determining ages to an accuracy of +/-0.4 Gyrs
at the 95% confidence level. Ages derived from the cluster turnoff are
not currently capable of reaching this precision. The important role
that 47 Tuc plays in galaxy formation studies, and as the metal-rich
template for the globular clusters, makes the case for a white dwarf
cooling age for this metal-rich cluster compelling.

Several recent analyses have suggested that 47 Tuc is more than 2 Gyrs
younger than the Galactic halo. Others have suggested an age similar
to that of the most metal poor globular clusters. The current
situation is clearly uncertain and obviously a new approach to age
dating this important cluster is required.

With the observations of 47 Tuc, this project will complete a legacy
for HST. It will be the third globular cluster observed for white
dwarf cooling; the three covering almost the full metallicity range of
the cluster system. Unless JWST has its proposed bluer filters (700
and 900 nm) this science will not be possible perhaps for decades
until a large optical telescope is again in space. Ages for globular
clusters from the main sequence turnoff are less precise than those
from white dwarf cooling making the science with the current proposal
truly urgent.

WFC3/UV 11919

WFC3 UVIS PSF Wings

The UVIS PSF wings will be evaluated at 5 field points (near the field
center and corners) in two filters (F275W and F625W) to check for
image stability. Subarray images of a moderately bright, isolated star
will be obtained at each field position with a series of increasing
exposure times designed to permit construction of a very high SNR PSF
with dynamic range sufficient to evaluate the wing intensity to 5
arcsec radius. Deep, saturated full field images will also be obtained
at each field point to permit evaluation of the wings at larger radii.
The images will also permit examination of potential straylight
effects, image persistence and electronic cross-talk.

WFC3/UVI/IR 11557

The Nature of Low-Ionization BAL QSOs

The rare subclass of optically-selected QSOs known as low-ionization
broad absorption line (LoBAL) QSOs show signs of high-velocity gas
outflows and reddened continua indicative of dust obscuration. Recent
studies show that galaxies hosting LoBAL QSOs tend to be ultraluminous
infrared systems that are undergoing mergers, and that have dominant
young ( 100 Myr) stellar populations. Such studies support the idea
that LoBAL QSOs represent a short- lived phase early in the life of
QSOs, when powerful AGN-driven winds are blowing away the dust and gas
surrounding the QSO. If so, understanding LoBALs would be critical in
the study of phenomena regulating black hole and galaxy evolution,
such as AGN feedback and the early stages of nuclear accretion. These
results, however, come from very small samples that may have serious
selection biases. We are therefore taking a more aggressive approach
by conducting a systematic multiwavelength study of a volume limited
sample of LoBAL QSOs at 0.5 z 0.6 drawn from SDSS. We propose to
image their host galaxies in two bands using WFC3/UVIS and WFC3/IR to
study the morphologies for signs of recent tidal interactions and to
map their interaction and star forming histories. We will thus
determine whether LoBAL QSOs are truly exclusively found in young
merging systems that are likely to be in the early stages of nuclear
accretion.

WFC3/UVIS 11905

WFC3 UVIS CCD Daily Monitor

The behavior of the WFC3 UVIS CCD will be monitored daily with a set
of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K
subarray biases are acquired at less frequent intervals throughout the
cycle to support subarray science observations. The internals from
this proposal, along with those from the anneal procedure (Proposal
11909), will be used to generate the necessary superbias and superdark
reference files for the calibration pipeline (CDBS).

WFC3/UVIS/IR 11644

A Dynamical-Compositional Survey of the Kuiper Belt: A New Window Into
the Formation of the Outer Solar System

The eight planets overwhelmingly dominate the solar system by mass,
but their small numbers, coupled with their stochastic pasts, make it
impossible to construct a unique formation history from the dynamical
or compositional characteristics of them alone. In contrast, the huge
numbers of small bodies scattered throughout and even beyond the
planets, while insignificant by mass, provide an almost unlimited
number of probes of the statistical conditions, history, and
interactions in the solar system. To date, attempts to understand the
formation and evolution of the Kuiper Belt have largely been dynamical
simulations where a hypothesized starting condition is evolved under
the gravitational influence of the early giant planets and an attempt
is made to reproduce the current observed populations. With little
compositional information known for the real Kuiper Belt, the test
particles in the simulation are free to have any formation location
and history as long as they end at the correct point. Allowing
compositional information to guide and constrain the formation,
thermal, and collisional histories of these objects would add an
entire new dimension to our understanding of the evolution of the
outer solar system. While ground based compositional studies have hit
their flux limits already with only a few objects sampled, we propose
to exploit the new capabilities of WFC3 to perform the first ever
large-scale dynamical-compositional study of Kuiper Belt Objects
(KBOs) and their progeny to study the chemical, dynamical, and
collisional history of the region of the giant planets. The
sensitivity of the WFC3 observations will allow us to go up to two
magnitudes deeper than our ground based studies, allowing us the
capability of optimally selecting a target list for a large survey
rather than simply taking the few objects that can be measured, as we
have had to do to date. We have carefully constructed a sample of 120
objects which provides both overall breadth, for a general
understanding of these objects, plus a large enough number of objects
in the individual dynamical subclass to allow detailed comparison
between and within these groups. These objects will likely define the
core Kuiper Belt compositional sample for years to come. While we have
many specific results anticipated to come from this survey, as with
any project where the field is rich, our current knowledge level is
low, and a new instrument suddenly appears which can exploit vastly
larger segments of the population, the potential for discovery -- both
anticipated and not -- is extraordinary.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.)

HSTARS: (None)

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)

SCHEDULED SUCCESSFUL
FGS GSAcq 09 09
FGS REAcq 08 08
OBAD with Maneuver 05 05

SIGNIFICANT EVENTS:

FLASH REPORT:

COS - At 063/14:59 COS FSW 4.10 was successfully installed.

ACS - At 063/16:40 ACS FSW 5.14 was successfully installed.

STIS - At 063/18:00 STIS FSW 5.00 was successfully installed.

 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Daily Report #4790 Cooper, Joe Hubble 0 February 12th 09 03:21 PM
Daily Report Cooper, Joe Hubble 0 December 22nd 08 06:17 PM
Daily Report #4513 Cooper, Joe Hubble 0 December 26th 07 04:33 PM
Daily Report [email protected] Hubble 0 October 29th 04 04:59 PM
HST Daily Report 131 George Barbehenn Hubble 0 May 11th 04 02:48 PM


All times are GMT +1. The time now is 12:29 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.