A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily Report #5114



 
 
Thread Tools Display Modes
  #1  
Old June 10th 10, 04:08 PM posted to sci.astro.hubble
Cooper, Joe
external usenet poster
 
Posts: 568
Default Daily Report #5114

HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science

DAILY REPORT #5114

PERIOD COVERED: 5am June 9 - 5am June 10, 2010 (DOY 160/09:00z-161/09:00z)

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.)

HSTARS: (None)

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)

SCHEDULED SUCCESSFUL
FGS GSAcq 5 5
FGS REAcq 10 10
OBAD with Maneuver 2 2

SIGNIFICANT EVENTS: (None)



OBSERVATIONS SCHEDULED:

ACS/WFC 11995

CCD Daily Monitor (Part 2)

This program comprises basic tests for measuring the read noise and
dark current of the ACS WFC and for tracking the growth of hot pixels.
The recorded frames are used to create bias and dark reference images
for science data reduction and calibration. This program will be
executed four days per week (Mon, Wed, Fri, Sun) for the duration of
Cycle 17. To facilitate scheduling, this program is split into three
proposals. This proposal covers 320 orbits (20 weeks) from 1 February
2010 to 20 June 2010.

ACS/WFC3 11882

CCD Hot Pixel Annealing

This program continues the monthly anneal that has taken place every
four weeks for the last three cycles. We now obtain WFC biases and
darks before and after the anneal in the same sequence as is done for
the ACS daily monitor (now done 4 times per week). So the anneal
observation supplements the monitor observation sets during the
appropriate week. Extended Pixel Edge Response (EPER) and First Pixel
Response (FPR) data will be obtained over a range of signal levels for
the Wide Field Channel (WFC). This program emulates the ACS pre-flight
ground calibration and post-launch SMOV testing (program 8948), so
that results from each epoch can be directly compared. The High
Resolution Channel (HRC) visits have been removed since it could not
be repaired during SM4.

This program also assesses the read noise, bias structure, and
amplifier cross-talk of ACS/WFC using the GAIN=1.4 A/D conversion
setting. This investigation serves as a precursor to a more
comprehensive study of WFC performance using GAIN=1.4.

COS/NUV 11705

Physical Properties of Quasar Outflows: From BALs to Mini-BALs

Accretion disk outflows are important components of quasar
environments. They might play a major role in facilitating accretion,
regulating star formation in the host galaxies and distributing metals
to the surrounding gas. They reveal themselves most conspicuously via
broad absorption lines (BALs), but they appear even more frequently in
other guises such as the weaker and narrower "mini-BALs." How are
these diverse outflow features related? Are mini-BALs really just
"mini" versions of the BALs, or do they represent a fundamentally
different type of outflow, with different degrees of ionization,
column densities, mass loss rates, physical origins, etc.?

We propose HST-COS spectroscopy to make the first quantitative
assessment of the outflow physical conditions across the full range of
weak/narrow mini-BALs to strong/broad BALs. Our strategy is to measure
key diagnostic lines (SVI, OVI, CIII, SIV, PV, etc.) at 930A - 1130A
(rest- frame) in a sample of 7 outflow quasars with known mini-BALs
through weak BALs. We will then 1) combine the COS data with
ground-based spectra of the same quasars to include more lines (CIV,
SiIV) at longer wavelengths, and 2) include in our analysis a nearly
identical UV/optical dataset obtained previously for a sample of
quasars with strong BALs. Our study of this combined dataset will be
an essential next step toward a more global understanding of quasar
outflows.

COS/NUV/FUV 11727

UV Spectroscopy of Local Lyman Break Galaxy Analogs: New Clues to
Galaxy Formation in the Early Universe

Much of our information about galaxy evolution and the interaction
between galaxies and the IGM at high-z has been provided by the Lyman
Break Galaxies (LBGs). However, it is difficult to investigate these
faint and distant objects in detail. To address this, we have used the
GALEX All-Sky Imaging Survey and the SDSS to identify for the first
time a rare population of low- redshift galaxies with properties
remarkably similar to the high-redshift LBGs. These local "Lyman Break
Analogs" (LBAs) resemble LBGs in terms of morphology, size, UV
luminosity, star formation rate, UV surface brightness, stellar mass,
velocity dispersion, metallicity, and dust content. We are assembling
a wide range of data on these objects with the goal of using them as
local laboratories for better understanding the relevant astrophysical
processes in LBGs. These data include HST imaging (95 orbits in Cy15
and 16), Spitzer photometry and spectroscopy, Chandra and XMM X-ray
imaging and spectroscopy, and near-IR integral field spectroscopy
(VLT, Keck, and Gemini). In this proposal we are requesting the most
important missing puzzle piece: far-UV spectra with a signal-to-noise
and spectral resolution significantly better than available for
typical LBGs. We will use these spectra to study the LBA's galactic
winds, probe the processes that regulate the escape of Ly-a and Lyman
continuum radiation, determine chemical abundances for the stars and
gas, and constrain the form of the high-end of the Initial Mass
Function. Adding these new COS data will give us vital information
about these extraordinary sites of star formation in the local
universe. In so-doing it will also shed new light on the processes
that led to the formation of stars, the building of galaxies, and the
enrichment and heating of the IGM in the early universe.

STIS/CC 11845

CCD Dark Monitor Part 2

Monitor the darks for the STIS CCD.

STIS/CC 11847

CCD Bias Monitor-Part 2

Monitor the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1,
and 1x1 at gain = 4, to build up high-S/N superbiases and track the
evolution of hot columns.

WFC3/IR 11696

Infrared Survey of Star Formation Across Cosmic Time

We propose to use the unique power of WFC3 slitless spectroscopy to
measure the evolution of cosmic star formation from the end of the
reionization epoch at z6 to the close of the galaxy- building era at
z~0.3.Pure parallel observations with the grisms have proven to be
efficient for identifying line emission from galaxies across a broad
range of redshifts. The G102 grism on WFC3 was designed to extend this
capability to search for Ly-alpha emission from the first galaxies.
Using up to 250 orbits of pure parallel WFC3 spectroscopy, we will
observe about 40 deep (4-5 orbit) fields with the combination of G102
and G141, and about 20 shallow (2-3 orbit) fields with G141 alone.

Our primary science goals at the highest redshifts a (1) Detect Lya
in ~100 galaxies with z5.6 and measure the evolution of the Lya
luminosity function, independent of of cosmic variance; 2) Determine
the connection between emission line selected and continuum-break
selected galaxies at these high redshifts, and 3) Search for the
proposed signature of neutral hydrogen absorption at re-ionization. At
intermediate redshifts we will (4) Detect more than 1000 galaxies in
Halpha at 0.5z1.8 to measure the evolution of the
extinction-corrected star formation density across the peak epoch of
star formation. This is over an order-of-magnitude improvement in the
current statistics, from the NICMOS Parallel grism survey. (5) Trace
``cosmic downsizing" from 0.5z2.2; and (6) Estimate the evolution in
reddening and metallicty in star- forming galaxies and measure the
evolution of the Seyfert population. For hundreds of spectra we will
be able to measure one or even two line pair ratios -- in particular,
the Balmer decrement and [OII]/[OIII] are sensitive to gas reddening
and metallicity. As a bonus, the G102 grism offers the possibility of
detecting Lya emission at z=7-8.8.

To identify single-line Lya emitters, we will exploit the wide
0.8--1.9um wavelength coverage of the combined G102+G141 spectra. All
[OII] and [OIII] interlopers detected in G102 will be reliably
separated from true LAEs by the detection of at least one strong line
in the G141 spectrum, without the need for any ancillary data. We
waive all proprietary rights to our data and will make high-level data
products available through the ST/ECF.

WFC3/IR 11719

A Calibration Database for Stellar Models of Asymptotic Giant Branch
Stars

Studies of galaxy formation and evolution rely increasingly on the
interpretation and modeling of near-infrared observations. At these
wavelengths, the brightest stars are intermediate mass asymptotic
giant branch (AGB) stars. These stars can contribute nearly 50% of the
integrated luminosity at near infrared and even optical wavelengths,
particularly for the younger stellar populations characteristic of
high-redshift galaxies (z1). AGB stars are also significant sources
of dust and heavy elements. Accurate modeling of AGB stars is
therefore of the utmost importance.

The primary limitation facing current models is the lack of useful
calibration data. Current models are tuned to match the properties of
the AGB population in the Magellanic Clouds, and thus have only been
calibrated in a very narrow range of sub-solar metallicities.
Preliminary observations already suggest that the models are
overestimating AGB lifetimes by factors of 2-3 at lower metallicities.
At higher (solar) metallicities, there are no appropriate observations
for calibrating the models.

We propose a WFC3/IR SNAP survey of nearby galaxies to create a large
database of AGB populations spanning the full range of metallicities
and star formation histories. Because of their intrinsically red
colors and dusty circumstellar envelopes, tracking the numbers and
bolometric fluxes of AGB stars requires the NIR observations we
propose here. The resulting observations of nearby galaxies with deep
ACS imaging offer the opportunity to obtain large (100-1000's)
complete samples of AGB stars at a single distance, in systems with
well-constrained star formation histories and metallicities.

WFC3/IR/S/C 11929

IR Dark Current Monitor

Analyses of ground test data showed that dark current signals are more
reliably removed from science data using darks taken with the same
exposure sequences as the science data, than with a single dark
current image scaled by desired exposure time. Therefore, dark current
images must be collected using all sample sequences that will be used
in science observations. These observations will be used to monitor
changes in the dark current of the WFC3-IR channel on a day-to-day
basis, and to build calibration dark current ramps for each of the
sample sequences to be used by Gos in Cycle 17. For each sample
sequence/array size combination, a median ramp will be created and
delivered to the calibration database system (CDBS).

WFC3/UV 12019

After the Fall: Fading AGN in Post-starburst Galaxies

We propose joint Chandra and HST observations of an extraordinary
sample of 12 massive post-starburst galaxies at z=0.4-0.8 that are in
the short-lived evolution phase a few 100 Myr after the peak of
merger-driven star formation and AGN activity. We will use the data to
measure X-ray luminosities, black hole masses, and accretion rates;
and with the accurate "clocks" provided by post-starburst stellar
populations, we will directly test theoretical models that predict a
power-law decay in the AGN light curve. We will also test whether star
formation and black hole accretion shut down in lock-step, quantify
whether the black holes transition to radiatively inefficient
accretion states, and constrain the observational signatures of black
hole mergers.

WFC3/UVIS 11595

Turning Out the Light: A WFC3 Program to Image z2 Damped Lyman Alpha
Systems

We propose to directly image the star-forming regions of z2 damped
Lya systems (DLAs) using the WFC3/UVIS camera on the Hubble Space
Telescope. In contrast to all previous attempts to detect the galaxies
giving rise to high redshift DLAs, we will use a novel technique that
completely removes the glare of the background quasar. Specifically,
we will target quasar sightlines with multiple DLAs and use the higher
redshift DLA as a ``blocking filter'' (via Lyman limit absorption) to
eliminate all FUV emission from the quasar. This will allow us to
carry out a deep search for FUV emission from the lower redshift DLA,
shortward of the Lyman limit of the higher redshift absorber. The
unique filter set and high spatial resolution afforded by WFC3/UVIS
will then enable us to directly image the lower redshift DLA and thus
estimate its size, star- formation rate and impact parameter from the
QSO sightline. We propose to observe a sample of 20 sightlines,
selected primarily from the SDSS database, requiring a total of 40 HST
orbits. The observations will allow us to determine the first FUV
luminosity function of high redshift DLA galaxies and to correlate the
DLA galaxy properties with the ISM characteristics inferred from
standard absorption-line analysis to significantly improve our
understanding of the general DLA population.

WFC3/UVIS 11697

Proper Motion Survey of Classical and SDSS Local Group Dwarf Galaxies

Using the superior resolution of HST, we propose to continue our
proper motion survey of Galactic dwarf galaxies. The target galaxies
include one classical dwarf, Leo II, and six that were recently
identified in the Sloan Digital Sky Survey data: Bootes I, Canes
Venatici I, Canes Venatici II, Coma Berenices, Leo IV, and Ursa Major
II. We will observe a total of 16 fields, each centered on a
spectroscopically-confirmed QSO. Using QSOs as standards of rest in
measuring absolute proper motions has proven to be the most accurate
and most efficient method. HST is our only option to quickly determine
the space motions of the SDSS dwarfs because suitable ground-based
imaging is only a few years old and such data need several decades to
produce a proper motion. The two most distant galaxies in our sample
will require time baselines of four years to achieve our goal of a
30-50 km/s uncertainty in the tangential velocity; given this and the
finite lifetime of HST, it is imperative that first-epoch observations
be taken in this cycle. The SDSS dwarfs have dramatically lower
surface brightnesses and luminosities than the classical dwarfs.
Proper motions are crucial for determining orbits of the galaxies and
knowing the orbits will allow us to test theories for the formation
and evolution of these galaxies and, more generally, for the formation
of the Local Group.

WFC3/UVIS 11905

WFC3 UVIS CCD Daily Monitor

The behavior of the WFC3 UVIS CCD will be monitored daily with a set
of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K
subarray biases are acquired at less frequent intervals throughout the
cycle to support subarray science observations. The internals from
this proposal, along with those from the anneal procedure (Proposal
11909), will be used to generate the necessary superbias and superdark
reference files for the calibration pipeline (CDBS).

WFC3/UVIS/IR 11700

Bright Galaxies at z7.5 with a WFC3 Pure Parallel Survey

The epoch of reionization represents a special moment in the history
of the Universe as it is during this era that the first galaxies and
star clusters are formed. Reionization also profoundly affects the
environment where subsequent generations of galaxies evolve. Our
overarching goal is to test the hypothesis that galaxies are
responsible for reionizing neutral hydrogen. To do so we propose to
carry out a pure parallel WFC3 survey to constrain the bright end of
the redshift z7.5 galaxy luminosity function on a total area of 176
arcmin^2 of sky. Extrapolating the evolution of the luminosity
function from z~6, we expect to detect about 20 Lyman Break Galaxies
brighter than M_* at z~8 significantly improving the current sample of
only a few galaxies known at these redshifts. Finding significantly
fewer objects than predicted on the basis of extrapolation from z=6
would set strong limits to the brightness of M_*, highlighting a fast
evolution of the luminosity function with the possible implication
that galaxies alone cannot reionize the Universe. Our observations
will find the best candidates for spectroscopic confirmation, that is
bright z7.5 objects, which would be missed by small area deeper
surveys. The random pointing nature of the program is ideal to beat
cosmic variance, especially severe for luminous massive galaxies,
which are strongly clustered. In fact our survey geometry of 38
independent fields will constrain the luminosity function like a
contiguous single field survey with two times more area at the same
depth. Lyman Break Galaxies at z7.5 down to m_AB=26.85 (5 sigma) in
F125W will be selected as F098M dropouts, using three to five orbits
visits that include a total of four filters (F606W, F098M, F125W,
F160W) optimized to remove low-redshift interlopers and cool stars.
Our data will be highly complementary to a deep field search for high-
z galaxies aimed at probing the faint end of the luminosity function,
allowing us to disentangle the degeneracy between faint end slope and
M_* in a Schechter function fit of the luminosity function. We waive
proprietary rights for the data. In addition, we commit to release the
coordinates and properties of our z7.5 candidates within one month
from the acquisition of each field.


 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Daily Report Cooper, Joe Hubble 0 December 22nd 08 06:17 PM
Daily Report #4490 Cooper, Joe Hubble 0 November 16th 07 06:14 PM
Daily Report #4467 Cooper, Joe Hubble 0 October 15th 07 03:56 PM
Daily Report [email protected] Hubble 0 October 29th 04 04:59 PM
HST Daily Report 131 George Barbehenn Hubble 0 May 11th 04 02:48 PM


All times are GMT +1. The time now is 03:11 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.