A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily Report #4954



 
 
Thread Tools Display Modes
  #1  
Old October 20th 09, 04:59 PM posted to sci.astro.hubble
Cooper, Joe
external usenet poster
 
Posts: 568
Default Daily Report #4954

HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science

DAILY REPORT #4954

PERIOD COVERED: 5am October 19 - 5am October 20, 2009 (DOY292/09:00z-293/09:00z)

OBSERVATIONS SCHEDULED

ACS/WFC3 11879

CCD Daily Monitor (Part 1)

This program comprises basic tests for measuring the read noise and
dark current of the ACS WFC and for tracking the growth of hot pixels.
The recorded frames are used to create bias and dark reference images
for science data reduction and calibration. This program will be
executed four days per week (Mon, Wed, Fri, Sun) for the duration of
Cycle 17. To facilitate scheduling, this program is split into three
proposals. This proposal covers 352 orbits (22 weeks) from 31 August
2009 to 31 January 2010.

COS/FUV 11895

FUV Detector Dark Monitor

The purpose of this proposal is to monitor the FUV detector dark rate
by taking long science exposures without illuminating the detector.
The detector dark rate and spatial distribution of counts will be
compared to pre-launch and SMOV data in order to verify the nominal
operation of the detector. Variations of count rate as a function of
orbital position will be analyzed to find dependence of dark rate on
proximity to the SAA. Dependence of dark rate as function of time will
also be tracked.

COS/NUV 11894

NUV Detector Dark Monitor

The purpose of this proposal is to measure the NUV detector dark rate
by taking long science exposures with no light on the detector. The
detector dark rate and spatial distribution of counts will be compared
to pre-launch and SMOV data in order to verify the nominal operation
of the detector. Variations of count rate as a function of orbital
position will be analyzed to find dependence of dark rate on proximity
to the SAA. Dependence of dark rate as function of time will also be
tracked.

NIC 11410

NICMOS Aperture Locations

The position of NICMOS apertures in the HST focal plane is measured in
the V2-V3 plane.

NIC 11416

NICMOS Parallel Thermal Background

Characterize the stability of the HST+NCS+Instrument thermal emission
as seen by NICMOS on secular scales. The data will be obtained using
NIC3 and the F222M filter and will run throughout the SMOV4 activities
as a pure parallel program.

NIC 11417

NICMOS Detector Read Noise and Dark Current

The NICMOS detector characteristics will be monitored during the
entire extent of the SMOV4 through a set of dark exposures. This will
also allow a determination of the detector temperature from bias
measurements. The data should be obtained in SAA-free orbits,
approximately every 24 hours. In addition, the detector read noise and
the detector shading profiles will be measured once a week.

NIC1/NIC2/NIC3 11820

NICMOS Post-SAA Calibration - CR Persistence Part 7

Internals for CR persistence

NIC2/WFC3/IR 11548

Infrared Imaging of Protostars in the Orion A Cloud: The Role of
Environment in Star Formation

We propose NICMOS and WFC3/IR observations of a sample of 252
protostars identified in the Orion A cloud with the Spitzer Space
Telescope. These observations will image the scattered light escaping
the protostellar envelopes, providing information on the shapes of
outflow cavities, the inclinations of the protostars, and the overall
morphologies of the envelopes. In addition, we ask for Spitzer time to
obtain 55-95 micron spectra of 75 of the protostars. Combining these
new data with existing 3.6 to 70 micron photometry and forthcoming
5-40 micron spectra measured with the Spitzer Space Telescope, we will
determine the physical properties of the protostars such as envelope
density, luminosity, infall rate, and outflow cavity opening angle. By
examining how these properties vary with stellar density (i.e.
clusters vs. groups vs. isolation) and the properties of the
surrounding molecular cloud; we can directly measure how the
surrounding environment influences protostellar evolution, and
consequently, the formation of stars and planetary systems.
Ultimately, this data will guide the development of a theory of
protostellar evolution.

STIS/CCD 11844

CCD Dark Monitor Part 1

The purpose of this proposal is to monitor the darks for the STIS CCD.

STIS/CCD 11846

CCD Bias Monitor-Part 1

The purpose of this proposal is to monitor the bias in the 1x1, 1x2,
2x1, and 2x2 bin settings at gain=1, and 1x1 at gain = 4, to build up
high-S/N superbiases and track the evolution of hot columns.

STIS/CCD 11852

STIS CCD Spectroscopic Flats C17

The purpose of this proposal is to obtain pixel-to-pixel lamp flat
fields for the STIS CCD in spectroscopic mode.

STIS/CCD/MA1 11737

The Distance Dependence of the Interstellar N/O Abundance Ratio: A
Gould Belt Influence?

The degree of elemental abundance homogeneity in the interstellar
medium is a function of the enrichment and mixing processes that
govern galactic chemical evolution. Observations of young stars and
the interstellar gas within ~500 pc of the Sun have revealed a local
ISM that is so well-mixed it is having an impact on ideas regarding
the formation of extrasolar planets. However, the situation just
beyond the local ISM is not so clear. Sensitive UV absorption line
measurements have recently revealed a pattern of inhomogeneities in
the interstellar O, N, and Kr gas-phase abundances at distances of
~500 pc and beyond that appear nucleosynthetic in origin rather than
due to dust depletion. In particular, based on a sample of 13
sightlines, Knauth et al. (2006) have found that the nearby stars (d
500 pc) exhibit a mean interstellar N/O abundance ratio that is
significantly higher (0.18 dex) than that toward the more distant
stars. Interestingly, all of their sightlines lie in the sky vicinity
of the Gould Belt of OB associations, molecular clouds, and diffuse
gas encircling the Sun at a distance of ~400 pc. Is it possible that
mixing processes have not yet smoothed out the recent ISM enrichment
by massive stars in the young Belt region? By measuring the
interstellar N/O ratios in a strategic new sample of sightlines with
STIS, we propose to test the apparent N/O homogeneity inside the Gould
Belt and determine if the apparent decline in the N/O ratio with
distance is robust and associated with the Belt region.

STIS/MA1/MA2 11857

STIS Cycle 17 MAMA Dark Monitor

This proposal monitors the behavior of the dark current in each of the
MAMA detectors.

The basic monitor takes two 1380s ACCUM darks each week with each
detector. However, starting Oct 5, pairs are only included for weeks
that the LRP has external MAMA observations planned. The weekly pairs
of exposures for each detector are linked so that they are taken at
opposite ends of the same SAA free interval. This pairing of exposures
will make it easier to separate long and short term temporal
variability from temperature dependent changes.

For both detectors, additional blocks of exposures are taken once
every six months. These are groups of five 1314s FUV-MAMA Time-Tag
darks or five 3x315s NUV ACCUM darks distributed over a single
SAA-free interval. This will give more information on the brightness
of the FUV MAMA dark current as a function of the amount of time that
the HV has been on, and for the NUV MAMA will give a better measure of
the short term temperature dependence.

WFC3/IR 11108

Near Infrared Observations of a Sample of z~6.5-6.7 Galaxies

The majority of the most distant galaxies discovered to date have been
found by strong Lyman alpha emission at red optical wavelengths. An
accurate estimate of the star formation rates for these objects
requires a measurement of the line-free UV continuum, which must be
taken at infrared wavelengths. Here we propose to obtain imaging with
WFC3 in the F140W filter for a sample of 9 Lyman alpha galaxies with
redshifts z~6.5 up to z=6.740 from a complete, flux- limited widefield
narrowband and multi-color survey conducted on the 8-m Subaru
Telescope. This program will investigate galaxy morphologies and star
formation for a uniform sample of the highest redshift galaxies now
known.

WFC3/IR 11202

The Structure of Early-type Galaxies: 0.1-100 Effective Radii

The structure, formation and evolution of early-type galaxies is still
largely an open problem in cosmology: how does the Universe evolve
from large linear scales dominated by dark matter to the highly
non-linear scales of galaxies, where baryons and dark matter both play
important, interacting, roles? To understand the complex physical
processes involved in their formation scenario, and why they have the
tight scaling relations that we observe today (e.g. the Fundamental
Plane), it is critically important not only to understand their
stellar structure, but also their dark-matter distribution from the
smallest to the largest scales. Over the last three years the SLACS
collaboration has developed a toolbox to tackle these issues in a
unique and encompassing way by combining new non-parametric strong
lensing techniques, stellar dynamics, and most recently weak
gravitational lensing, with high-quality Hubble Space Telescope
imaging and VLT/Keck spectroscopic data of early-type lens systems.
This allows us to break degeneracies that are inherent to each of
these techniques separately and probe the mass structure of early-type
galaxies from 0.1 to 100 effective radii. The large dynamic range to
which lensing is sensitive allows us both to probe the clumpy
substructure of these galaxies, as well as their low-density outer
haloes. These methods have convincingly been demonstrated, by our
team, using smaller pilot-samples of SLACS lens systems with HST data.
In this proposal, we request observing time with WFC3 and NICMOS to
observe 53 strong lens systems from SLACS, to obtain complete
multi-color imaging for each system. This would bring the total number
of SLACS lens systems to 87 with completed HST imaging and effectively
doubles the known number of galaxy-scale strong lenses. The deep HST
images enable us to fully exploit our new techniques, beat down
low-number statistics, and probe the structure and evolution of early-
type galaxies, not only with a uniform data-set an order of magnitude
larger than what is available now, but also with a fully-coherent and
self-consistent methodological approach!

WFC3/UV 11906

WFC3 UVIS CCD Gain

The absolute gain of each quadrant of the WFC3 UVIS detector will be
measured for the nominal detector readout configuration and at the
on-orbit operating temperature.

WFC3/UVIS 11707

Detecting Isolated Black Holes through Astrometric Microlensing

This proposal aims to make the first detection of isolated
stellar-mass black holes (BHs) in the Milky Way, and to determine
their masses. Until now, the only directly measured BH masses have
come from radial-velocity measurements of X-ray binaries. Our proposed
method uses the astrometric shifts that occur when a galactic-bulge
microlensing event is caused by a BH lens. Out of the hundreds of
bulge microlensing events found annually by the OGLE and MOA surveys,
a few are found to have very long durations (200 days). It is
generally believed that the majority of these long-duration events are
caused by lenses that are isolated BHs.

To test this hypothesis, we will carry out high-precision astrometry
of 5 long-duration events, using the ACS/HRC camera. The expected
astrometric signal from a BH lens is 1.4 mas, at least 7 times the
demonstrated astrometric precision attainable with the HRC.

This proposal will thus potentially lead to the first unambiguous
detection of isolated stellar-mass BHs, and the first direct mass
measurement for isolated stellar-mass BHs through any technique.
Detection of several BHs will provide information on the frequency of
BHs in the galaxy, with implications for the slope of the IMF at high
masses, the minimum mass of progenitors that produce BHs, and
constraints on theoretical models of BH formation.

WFC3/UVIS 11905

WFC3 UVIS CCD Daily Monitor

The behavior of the WFC3 UVIS CCD will be monitored daily with a set
of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K
subarray biases are acquired at less frequent intervals throughout the
cycle to support subarray science observations. The internals from
this proposal, along with those from the anneal procedure (Proposal
11909), will be used to generate the necessary superbias and superdark
reference files for the calibration pipeline (CDBS).

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.)

HSTARS: (None)

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)

SCHEDULED SUCCESSFUL
FGS GSAcq 11 11
FGS REAcq 04 04
OBAD with Maneuver 06 06

SIGNIFICANT EVENTS: (None)


 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Daily Report Cooper, Joe Hubble 0 December 22nd 08 06:17 PM
ASTRO: IC 4954-5 Rick Johnson[_2_] Astro Pictures 4 August 9th 08 12:51 PM
Daily Report #4407 Pataro, Pete Hubble 0 July 19th 07 05:36 PM
Daily Report [email protected] Hubble 0 October 29th 04 04:59 PM
HST Daily Report 131 George Barbehenn Hubble 0 May 11th 04 02:48 PM


All times are GMT +1. The time now is 12:30 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.