A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Astronomy Misc
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Tweaking Physics Theories: Who Invented the Method?



 
 
Thread Tools Display Modes
  #1  
Old November 17th 17, 09:33 AM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default Tweaking Physics Theories: Who Invented the Method?

Ethan Siegel: "Scientific Theories Never Die, Not Unless Scientists Choose To Let Them. When it comes to science, we like to think that we formulate hypotheses, test them, throw away the ones that fail to match, and continue testing the successful one until only the best ideas are left. But the truth is a lot muddier than that. The actual process of science involves tweaking your initial hypothesis over and over, trying to pull it in line with what we already know. [...] By the addition of enough extra free parameters, caveats, behaviors, or modifications to your theory, you can literally salvage any idea. As long as you're willing to tweak what you've come up with sufficiently, you can never rule anything out." https://www.forbes.com/sites/startsw...e-to-let-them/

Sabine Hossenfelder (Bee): "The criticism you raise that there are lots of speculative models that have no known relevance for the description of nature has very little to do with string theory but is a general disease of the research area. Lots of theorists produce lots of models that have no chance of ever being tested or ruled out because that's how they earn a living. The smaller the probability of the model being ruled out in their lifetime, the better. It's basic economics. Survival of the 'fittest' resulting in the natural selection of invincible models that can forever be amended." http://www.math.columbia.edu/~woit/wordpress/?p=9375

Before 1915 theoretical physics was DEDUCTIVE - you cannot introduce any changes to your theory that are not deducible from the initial axioms (postulates). In 1915 things changed. Here Michel Janssen describes endless empirical groping, fudging and fitting until "excellent agreement with observation" was reached:

Michel Janssen: "But - as we know from a letter to his friend Conrad Habicht of December 24, 1907 - one of the goals that Einstein set himself early on, was to use his new theory of gravity, whatever it might turn out to be, to explain the discrepancy between the observed motion of the perihelion of the planet Mercury and the motion predicted on the basis of Newtonian gravitational theory. [...] The Einstein-Grossmann theory - also known as the "Entwurf" ("outline") theory after the title of Einstein and Grossmann's paper - is, in fact, already very close to the version of general relativity published in November 1915 and constitutes an enormous advance over Einstein's first attempt at a generalized theory of relativity and theory of gravitation published in 1912. The crucial breakthrough had been that Einstein had recognized that the gravitational field - or, as we would now say, the inertio-gravitational field - should not be described by a variable speed of light as he had attempted in 1912, but by the so-called metric tensor field.. The metric tensor is a mathematical object of 16 components, 10 of which independent, that characterizes the geometry of space and time. In this way, gravity is no longer a force in space and time, but part of the fabric of space and time itself: gravity is part of the inertio-gravitational field. Einstein had turned to Grossmann for help with the difficult and unfamiliar mathematics needed to formulate a theory along these lines. [...] Einstein did not give up the Einstein-Grossmann theory once he had established that it could not fully explain the Mercury anomaly. He continued to work on the theory and never even mentioned the disappointing result of his work with Besso in print. So Einstein did not do what the influential philosopher Sir Karl Popper claimed all good scientists do: once they have found an empirical refutation of their theory, they abandon that theory and go back to the drawing board. [...] On November 4, 1915, he presented a paper to the Berlin Academy officially retracting the Einstein-Grossmann equations and replacing them with new ones. On November 11, a short addendum to this paper followed, once again changing his field equations. A week later, on November 18, Einstein presented the paper containing his celebrated explanation of the perihelion motion of Mercury on the basis of this new theory. Another week later he changed the field equations once more. These are the equations still used today. This last change did not affect the result for the perihelion of Mercury. Besso is not acknowledged in Einstein's paper on the perihelion problem. Apparently, Besso's help with this technical problem had not been as valuable to Einstein as his role as sounding board that had earned Besso the famous acknowledgment in the special relativity paper of 1905. Still, an acknowledgment would have been appropriate. After all, what Einstein had done that week in November, was simply to redo the calculation he had done with Besso in June 1913, using his new field equations instead of the Einstein-Grossmann equations. It is not hard to imagine Einstein's excitement when he inserted the numbers for Mercury into the new expression he found and the result was 43", in excellent agreement with observation." https://netfiles.umn.edu/users/janss...0page/EBms.pdf

Einstein's general relativity had not predicted that the gravitational waves travel at the speed of light but was tweaked to make that prediction:

Arthur Eddington: "The statement that in the relativity theory gravitational waves are propagated with the speed of light has, I believe, been based entirely upon the foregoing investigation; but it will be seen that it is only true in a very conventional sense. If coordinates are chosen so as to satisfy a certain condition which has no very clear geometrical importance, the speed is that of light; if the coordinates are slightly different the speed is altogether different from that of light. The result stands or falls by the choice of coordinates and, so far as can be judged, the coordinates here used were purposely introduced in order to obtain the simplification which results from representing the propagation as occurring with the speed of light. The argument thus follows a vicious circle." The Mathematical Theory of Relativity, pp. 130-131 https://www.amazon.com/Mathematical-.../dp/0521091659

In order to be consistent with dark matter, general relativity needs four fudge factors:

"Verlinde's calculations fit the new study's observations without resorting to free parameters – essentially values that can be tweaked at will to make theory and observation match. By contrast, says Brouwer, conventional dark matter models need four free parameters to be adjusted to explain the data." https://www.newscientist.com/article...f-dark-matter/

How many fudge factors LIGO conspirators needed to model the nonexistent gravitational waves is a deep mystery:

"Cornell professors Saul Teukolsky, astrophysics, and Larry Kidder, astronomy, played an instrumental role in the first detection of gravitational waves, a century after Albert Einstein predicted their existence in his theory of general relativity. [...] The LIGO and Virgo group confirmed that these gravitational waves had come from the collision of black holes by comparing their data with a theoretical model developed at Cornell. Teukolsky and the Cornell-founded Simulation of eXtreme Spacetimes collaboration group have been developing this model since 2000, according to the University." http://cornellsun.com/2016/02/10/cor...of-relativity/

Pentcho Valev
  #2  
Old November 18th 17, 05:09 PM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default Tweaking Physics Theories: Who Invented the Method?

Einstein's general relativity was not deduced from postulates. It is a not-even-wrong empirical concoction - a malleable combination of ad hoc equations and fudge factors allowing Einsteinians to predict anything they want:

https://www.quora.com/What-are-the-p...ral-Relativity
What are the postulates of General Relativity? Alexander Poltorak, Adjunct Professor of Physics at the CCNY: "In 2005 I started writing a paper, "The Four Cornerstones of General Relativity on which it doesn't Rest." Unfortunately, I never had a chance to finish it. The idea behind that unfinished article was this: there are four principles that are often described as "postulates" of General Relativity:

1. Principle of general relativity

2. Principle of general covariance

3. Equivalence principle

4. Mach principle

The truth is, however, that General Relativity is not really based on any of these "postulates" although, without a doubt, they played important heuristic roles in the development of the theory." [END OF QUOTATION]

Sometimes Einsteinians call Einstein's 1915 final ad hoc equations "postulates" (we all live in Einstein's schizophrenic world, don't we):

http://math.stanford.edu/~schoen/tri.../lecture_3.pdf
"Postulates of General Relativity
Postulate 1: A spacetime (M^4, g) is a Riemannian 4-manifold M^4 with a Lorentzian metric g.
Postulate 2: A test mass beginning at rest moves along a timelike geodesic. (Geodesic equation) ...
Postulate 3: Einstein equation is satisfied. (Einstein equation) ..." [END OF QUOTATION]

Today's theories and models in fundamental physics are metastases from the primary tumor, Einstein's general relativity:

Sabine Hossenfelder: "Many of my colleagues believe this forest of theories will eventually be chopped down by data. But in the foundations of physics it has become extremely rare for any model to be ruled out. The accepted practice is instead to adjust the model so that it continues to agree with the lack of empirical support." http://www.nature.com.proxy.readcube...nphys4079.html

Sabine Hossenfelder (Bee): "The criticism you raise that there are lots of speculative models that have no known relevance for the description of nature has very little to do with string theory but is a general disease of the research area. Lots of theorists produce lots of models that have no chance of ever being tested or ruled out because that's how they earn a living. The smaller the probability of the model being ruled out in their lifetime, the better. It's basic economics. Survival of the 'fittest' resulting in the natural selection of invincible models that can forever be amended."x http://www.math.columbia.edu/~woit/wordpress/?p=9375

Pentcho Valev
  #3  
Old November 19th 17, 02:48 PM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default Tweaking Physics Theories: Who Invented the Method?

A physics theory is either a NOT-EVEN-WRONG EMPIRICAL CONCOCTION, or DEDUCTIVE, that is, "built up logically from a small number of fundamental assumptions, the so-called axioms":

Albert Einstein: "From a systematic theoretical point of view, we may imagine the process of evolution of an empirical science to be a continuous process of induction. Theories are evolved and are expressed in short compass as statements of a large number of individual observations in the form of empirical laws, from which the general laws can be ascertained by comparison. Regarded in this way, the development of a science bears some resemblance to the compilation of a classified catalogue. It is, as it were, a purely empirical enterprise. But this point of view by no means embraces the whole of the actual process ; for it slurs over the important part played by intuition and deductive thought in the development of an exact science. As soon as a science has emerged from its initial stages, theoretical advances are no longer achieved merely by a process of arrangement. Guided by empirical data, the investigator rather develops a system of thought which, in general, is built up logically from a small number of fundamental assumptions, the so-called axioms." https://www.marxists.org/reference/a...ative/ap03.htm

In other words, equations in a physics theory are either GUESSED, or (possibly guessed initially but then rigorously) DEDUCED from "a small number of fundamental assumptions, the so-called axioms":

Richard Feynman: "Dirac discovered the correct laws for relativity quantum mechanics simply by guessing the equation. The method of guessing the equation seems to be a pretty effective way of guessing new laws." http://dillydust.com/The%20Character...rksid erg.pdf

Pentcho Valev
 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
The Scientific Method in Physics Pentcho Valev Astronomy Misc 2 April 24th 17 07:34 PM
Theoretical Physics' Method: Deduction (Nothing Else) Pentcho Valev Astronomy Misc 1 January 2nd 16 02:36 PM
Who invented the Y-factor method of noise measurement? Dave Misc 4 August 13th 05 11:12 PM
Who invented the Y-factor method of noise measurement? Dave Amateur Astronomy 4 August 13th 05 11:12 PM
Who invented the Y-factor method of noise measurement? Dave SETI 4 August 13th 05 11:12 PM


All times are GMT +1. The time now is 12:54 AM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.