A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily 3546



 
 
Thread Tools Display Modes
  #1  
Old February 9th 04, 04:56 PM
external usenet poster
 
Posts: n/a
Default Daily 3546

HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

DAILY REPORT # 3546

PERIOD COVERED: DOY 36

OBSERVATIONS SCHEDULED

ACS 9984

Cosmic Shear With ACS Pure Parallels

Small distortions in the shapes of background galaxies by foreground
mass provide a powerful method of directly measuring the amount and
distribution of dark matter. Several groups have recently detected
this weak lensing by large-scale structure, also called cosmic shear.
The high resolution and sensitivity of HST/ACS provide a unique
opportunity to measure cosmic shear accurately on small scales. Using
260 parallel orbits in Sloan textiti {F775W} we will measure for the
first time: beginlistosetlength sep0cm setlengthemsep0cm setlength
opsep0cm em the cosmic shear variance on scales 0.7 arcmin, em the
skewness of the shear distribution, and em the magnification effect.
endlist Our measurements will determine the amplitude of the mass
power spectrum sigma_8Omega_m^0.5, with signal-to-noise {s/n} ~ 20,
and the mass density Omega_m with s/n=4. They will be done at small
angular scales where non-linear effects dominate the power spectrum,
providing a test of the gravitational instability paradigm for
structure formation. Measurements on these scales are not possible
from the ground, because of the systematic effects induced by PSF
smearing from seeing. Having many independent lines of sight reduces
the uncertainty due to cosmic variance, making parallel observations
ideal.

ACS/HRC/WFC 10059

CCD Daily Monitor

This program consists of basic tests to monitor, the read noise, the
development of hot pixels and test for any source of noise in ACS CCD
detectors. This programme will be executed once a day for the entire
lifetime of ACS.

ACS/WFC 9722

Life in the fast lane: The dark-matter distribution in the most
massive galaxy clusters in the Universe at z0.5

We propose two-filter ACS observations of a complete sample of 12 very
X-ray luminous galaxy clusters at 0.5z0.7 as a cornerstone of a
comprehensive multi-wavelength study of the properties of the most
massive clusters in the universe. Our sample includes the famous
systems Cl0016+16 and MS0451-03; all other clusters are new
discoveries from the MACS survey. Being the counterparts of the
best-studied systems at lower and higher redshift and comprising ALL
massive clusters at 0.5z0.7 observable from Mauna Kea this sample
will become the ultimate reference for cluster studies at z0.5. HST's
unique capabilities will allow us to: 1} measure accurately the
clusters' dark matter distribution on scales from tens to more than
500/h_50 kpc from observations of strong and weak gravitational
lensing, 2} use galaxy-galaxy lensing to measure the shape, extent,
and mass content of the dark-matter halos of both cluster and field
galaxies, and 3} study the color morphology of mergers and the star
formation history of galaxies in a high-density environment. The
proposed observations are complemented by Chandra observations of all
our targets {all 12 awarded, 11 executed to date} which provide
independent constraints on the dark matter and gas distribution in the
cluster cores, as well a by extensive groundbased observations of weak
lensing on yet larger scales, galaxy dynamics, and the SZ effect.

ACS/WFC 9744

HST Imaging of Gravitational Lenses

Gravitational lenses offer unique opportunities to study cosmology,
dark matter, galactic structure, galaxy evolution and quasar host
galaxies. They are also the only sample of galaxies selected based on
their mass rather than their luminosity or surface brightness. While
gravitational lenses can be discovered with ground-based optical and
radio observations, converting them into astrophysical tools requires
HST. HST has demonstrated that it is the only telescope that can in
each case precisely locate the lens galaxy, measure its luminosity,
color and structure, and search for lensed images of the source host
galaxy given the typical image separations of ~1''. We will obtain
ACS/WFC V and I images and NICMOS H images of 21 new lenses never
observed by HST and NICMOS H images of 16 lenses never observed by HST
in the IR. As in previous cycles, we request that the data be made
public immediately.

HST 9382

A Large Targeted Survey for z 1.6 Damped Lyman Alpha Lines in SDSS
QSO MgII-FeII Systems.

We have searched the first public release of SDSS QSO spectra for
low-z {z1.65} metal absorption lines and found over 200 large rest
equivalent width MgII-FeII systems. Previously, we empirically showed
that such systems are good tracers of large neutral gas columns, with
~50% being classical damped Lyman alpha {DLA} systems {N_HI=2*10^20
cm^-2}. Here we propose to follow up a well-defined subset of 79 of
them to search for DLAs with 0.47z1.60. Only QSOs brighter than
g'=19 were selected. The QSO emission and DLA absorption redshifts
were constrained to virtually eliminate data loss due to intervening
Lyman limit absorption. Consequently, we expect to discover ~40 new
DLAs, which is a three-fold increase in this redshift interval. This
will significantly improve our earlier low-z DLA statistical results
on their incidence, cosmological mass density, and N_HI distribution.
The results will also allow us to better quantify the empirical DLA --
metal-line correlation. With this improved understanding, the need for
follow-up UV spectroscopy will lessen and, with the release of the
final database of SDSS QSO spectra {an ~25-fold increase}, the number
of low-z DLAs could be increased arbitrarily. Thus, the power of the
large and statistically-sound SDSS database in combination with a
proven technique for finding low-z DLAs will, over the next few years,
essentially solve the problem of making an accurate determination of
the cosmic evolution of the neutral gas component down to z~0.4.

NIC/NIC3 9865

The NICMOS Parallel Observing Program

We propose to continue managing the NICMOS pure parallel program.
Based on our experience, we are well prepared to make optimal use of
the parallel opportunities. The improved sensitivity and efficiency of
our observations will substantially increase the number of
line-emitting galaxies detected. As our previous work has
demonstrated, the most frequently detected line is Halpha at
0.7z1.9, which provides an excellent measure of current star
formation rate. We will also detect star-forming and active galaxies
in other redshift ranges using other emission lines. The grism
observations will produce by far the best available Halpha luminosity
functions over the crucial--but poorly observed--redshift range where
galaxies appear to have assembled most of their stellar mass. This key
process of galaxy evolution needs to be studied with IR data; we found
that observations at shorter wavelengths appear to have missed a large
fraction of the star-formation in galaxies, due to dust reddening. We
will also obtain deep F110W and F160W images, to examine the space
densities and morphologies of faint red galaxies. In addition to
carrying out the public parallels, we will make the fully reduced and
calibrated images and spectra available on-line, with some
ground-based data for the deepest parallel fields included.

NIC1 9833

T Dwarf Companions: Searching for the Coldest Brown Dwarfs

Faint companions to known stars have historically led to the discovery
of new classes of stellar and substellar objects. Because these
discoveries are typically limited by the flux ratio of the components
in the system, the intrinsically faintest companions are most
effectively identified around the intrinsically faintest primaries. We
propose to use NICMOS to image a sample of 22 of the coolest known
{T-type} brown dwarfs in the Solar Neighborhood in order to search for
fainter and cooler brown dwarf companions. The high spatial resolution
of the NIC 1 detector enables us to distinguish binary systems with
apparent separations greater than 0"08, or physical separations
greater than 1.2 AU at the nominal distances of the objects in our
sample. Furthermore, the substantial sensitivity of NICMOS imaging
allows us to probe companion masses of 5-50 Jupiter masses and
companion effective temperatures of 250-1300 K in a maximally
efficient manner. Based on work to date, we expect that roughly 20% of
the objects in our sample will be binary, and that one or two of these
will likely harbor a significantly fainter secondary. Hence, we expect
to find a companion cooler than any currently known brown dwarf, a
potential prototype for the next spectral class. In addition, our
investigation will add substantially to the sample of known binary
brown dwarfs, allowing improved statistical analyses of the binary
fraction, separation distribution, and mass ratio distribution of
these systems, key quantities for probing brown dwarf formation. We
will also identify optimal substellar systems for astrometric mass
measurements, a critical check for theoretical models of brown dwarfs
and extrasolar planets.

NIC2 9834

Finding Planets in the Stellar Graveyard: A Faint Companion Search of
White Dwarfs with NICMOS

We propose to do a deep search for substellar objects in orbit around
white dwarfs with the newly refurbished NICMOS camera as part of the
PI's doctoral thesis work. Direct imaging of planets around main
sequence stars is difficult due to the large contrast ratio, a problem
which is much less severe for companions to white dwarfs. White dwarfs
are not usually considered in planet searches but recent theoretical
work and observations are motivating new searches for planetary
systems and dust disks around DAZ white dwarfs. We propose to conduct
the search with the NIC2 coronagraph to find resolved companions and
do photometry to search for unresolved companions through Near-IR
excesses. We estimate that the survey will be sensitive to brown
dwarfs, high mass jovian planets, and dust disks. By probing a wide
range of orbital separations and companion masses, this survey will
help to answer questions about the brown dwarf desert, common envelope
evolution, and planet formation. HST and NICMOS provide a unique
capability to do this search, as no ground based observatory with AO
can adequately search for faint companions as close and with such high
contrast.

NICMOS 8791

NICMOS Post-SAA calibration - CR Persistence Part 2

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be
non-standard reference files available to users with a USEAFTER
date/time mark. The keyword 'USEAFTER=date/time' will also be added to
the header of each POST-SAA DARK frame. The keyword must be populated
with the time, in addition to the date, because HST crosses the SAA ~8
times per day so each POST-SAA DARK will need to have the appropriate
time specified, for users to identify the ones they need. Both the raw
and processed images will be archived as POST-SAA DARKSs. Generally we
expect that all NICMOS science/calibration observations started within
50 minutes of leaving an SAA will need such maps to remove the CR
persistence from the science images. Each observation will need its
own CRMAP, as different SAA passages leave different imprints on the
NICMOS detectors.

STIS/CCD 10017

CCD Dark Monitor-Part 1

Monitor the darks for the STIS CCD.

STIS/CCD 10019

CCD Bias Monitor - Part 1

Monitor the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1,
and 1x1 at gain = 4, to build up high-S/N superbiases and track the
evolution of hot columns.

STIS/CCD 10085

STIS Pure Parallel Imaging Program: Cycle 12

This is the default archival pure parallel program for STIS during
cycle 12.

STIS/CCD/MA1 9769

STIS Observations of Orbital and Rotational Variations in the Unique
Post-Common Envelope System HS1136+6646

HS1136+6646 is a recently discovered close-binary system consisting of
a hot {Teff ~ 120, 000 K} DAO white dwarf and a K7V main sequence
companion. It is unique in being a relatively bright, nearby example
of both a very young post-common envelope system and a pre-cataclysmic
variable system. Although the K star component of HS1136+6646 has now
been well studied from the ground, the white dwarf can only be
effectively studied at UV wavelengths from space. We propose STIS
observations of HS1136+6646 which focus specifically on the nature of
the white dwarf, i.e., its mass, temperature, age, photospheric
composition and possible magnetic field. High-dispersion echelle
spectra, taken at quadrature of the 0.83607 day orbital period of the
system will provide an accurate determination of the gravitational
redshift of the white dwarf.

STIS/MA1/MA1 10031

STIS MAMA Cycle 12 Deep Wavecals

This program will obtain deep wavecals for the STIS Echelle modes in
order to produce improved dispersions solutions. The new wavelength
solution is based on a physical model of the instrument's optical
elements and will supercede the empirical polynomial fit. This work is
part of the STIS Calibration Enhancement project conducted at the
ST-ECF. Deep wavecals are required in order to take full advantage of
the new line list from the ESA -funded Pt/Cr-Ne calibration lamp
project and to test the predictive power of physical instrument model
of STIS. A second epoch of observations will investigate the issue of
MSM repeatability.

WFPC2 10070

WFPC2 CYCLE 12 Supplemental Darks Part 2/3

This dark calibration program obtains 3 dark frames every day to
provide data for monitoring and characterizing the evolution of hot
pixels.

WFPC2 10082

POMS Test Proposal: WFII backup parallel archive proposal

This is a POMS test proposal designed to simulate scientific plans

WFPC2 10084

WFII parallel archive proposal

This is the generic target version of the WFPC2 Archival Pure Parallel
program. The program will be used to take parallel images of random
areas of the sky, following the recommendations of the 2002 Parallels
Working Group.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.) None

COMPLETED OPS REQs: None

OPS NOTES EXECUTED:
1194-0 Adjust Recharge Ratio Limits for High Sun DOY 2004/036-046 @ 036/12:01z

SCHEDULED SUCCESSFUL FAILURE TIMES
FGS GSacq 09 09
FGS REacq 10 10
FHST Update 07 07
LOSS of LOCK



SIGNIFICANT EVENTS: None


 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Monitoring NASA Daily ISS Report JimO Space Station 2 June 1st 04 10:33 PM
JimO Speaks on 'Daily Planet' re Hubble JimO Policy 0 February 11th 04 11:53 PM
Spirit's daily activities schedule? Matti Anttila Policy 0 January 15th 04 09:39 AM
best site for daily schedule of rover activity? bob History 2 January 5th 04 01:16 PM
Investor's Business Daily: Rethinking NASA dougk Policy 1 August 28th 03 12:07 AM


All times are GMT +1. The time now is 08:06 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.