A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily #4068



 
 
Thread Tools Display Modes
  #1  
Old March 13th 06, 02:26 PM posted to sci.astro.hubble
external usenet poster
 
Posts: n/a
Default Daily #4068

HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science

DAILY REPORT #4068

PERIOD COVERED: UT March 10,11,12, 2006 (DOY 069,070,071)

OBSERVATIONS SCHEDULED

NIC1/NIC2/NIC3 8793

NICMOS Post-SAA calibration - CR Persistence Part 4

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be
non-standard reference files available to users with a USEAFTER
date/time mark. The keyword 'USEAFTER=date/time' will also be added to
the header of each POST-SAA DARK frame. The keyword must be populated
with the time, in addition to the date, because HST crosses the SAA ~8
times per day so each POST-SAA DARK will need to have the appropriate
time specified, for users to identify the ones they need. Both the raw
and processed images will be archived as POST-SAA DARKSs. Generally we
expect that all NICMOS science/calibration observations started within
50 minutes of leaving an SAA will need such maps to remove the CR
persistence from the science images. Each observation will need its
own CRMAP, as different SAA passages leave different imprints on the
NICMOS detectors.

ACS/WFC 10775

An ACS Survey of Galactic Globular Clusters

We propose to conduct an ACS/WFC imaging survey of Galactic globular
clusters. We will construct the most extensive and deepest set of
photometry and astrometry to-date for these systems reaching a main
sequence mass of ~0.2 solar mass with S/N = 10. We will combine these
data with archival WFPC2 and STIS images to determine proper motions
for the stars in our fields. The resultant cleaned cluster CMDs will
allow us to study a variety of scientific questions. These include
[but are not limited to] 1} the determination of cluster ages and
distances 2} the construction of main sequence mass functions and the
issue of mass segregation 3} the internal motions and dynamical
evolution of globular clusters, and 4} absolute cluster motions,
orbits, and the Milky Way gravitational potential. We anticipate that
the unique resource provided by the proposed treasury archive will
play a central role in the field of globular cluster studies for
decades, with a stature comparable to that of the Hubble Deep Field
for high redshift studies.

ACS/HRC 10738

Earth Flats

Sky flats will be obtained by observing the bright Earth with the HRC
and WFC. These observations will be used to verify the accuracy of the
flats currently in the pipeline and to monitor any changes. Weekly
coronagraphic monitoring is required to assess the changing position
of the spots.

ACS/WFC 10730

External CTE Monitor

Monitor CTE in Cycle 14 for WFC and HRC

ACS/HRC/WFC 10729

ACS CCDs daily monitor

This program consists of a set of basic tests to monitor, the read
noise, the development of hot pixels and test for any source of noise
in ACS CCD detectors. The files, biases and dark will be used to
create reference files for science calibration. This programme will be
for the entire lifetime of ACS. Changes from cycle 13:- The default
gain for WFC is 2 e-/DN. As before bias frames will be collected for
both gain 1 and gain 2. Dark frames are acquired using the default
gain {2}. This program cover the period Oct, 2 2005- May, 29-2006. The
second half of the program has a different proposal number: 10758.

NIC1 10725

Photometric Stability

This NICMOS calibration proposal carries out photometric monitoring
observations during Cycle 14. The format of the program is similar to
that of the Cycle 12 program 9995 and Cycle 13 program 10381, but a
few modifications were made. Provisions had to be made to adopt to 2-
gyro mode {G191B2B was added as extra target to provide target
visibility through most of the year}. Where before 4 or 7 dithers were
made in a filter before we moved to the next filter, now we observe
all filters at one position before moving to the next dither position.
While the previous method was chosen to minimize the effect of
persistence, we now realize that persistence is connected to charge
trapping and by moving through the filter such that the count rate
increases, we reach equilibrium more quickly between charge being
trapped and released. We have also increased exposure times where
possible to reduce the charge trapping non-linearity effects.

NIC1/NC2/NC3 10723

Cycle 14 NICMOS dark current, shading profile, and read noise
monitoring program

The purpose of this proposal is to monitor the dark current, read
noise, and shading profile for all three NICMOS detectors throughout
the duration of Cycle 14. This proposal is a slightly modified version
of proposal 10380 of cycle 13 and 9993 of cycle12 that we cut down
some exposure time to make the observation fit within 24 orbits.

FGS 10610

Astrometric Masses of Extrasolar Planets and Brown Dwarfs

We propose observations with HST/FGS to estimate the astrometric
elements {perturbation orbit semi-major axis and inclination} of
extra-solar planets orbiting six stars. These companions were
originally detected by radial velocity techniques. We have
demonstrated that FGS astrometry of even a short segment of reflex
motion, when combined with extensive radial velocity information, can
yield useful inclination information {McArthur et al. 2004}, allowing
us to determine companion masses. Extrasolar planet masses assist in
two ongoing research frontiers. First, they provide useful boundary
conditions for models of planetary formation and evolution of
planetary systems. Second, knowing that a star in fact has a plantary
mass companion, increases the value of that system to future
extrasolar planet observation missions such as SIM PlanetQuest, TPF,
and GAIA.

ACS/HRC 10609

Sizes, Shapes, and SEDs: Searching for Mass Segregation in the Super
Star Clusters of Nearby Starburst

We propose to investigate mass segregation and star cluster evolution
and dissolution processes in Super Star Cluster {SSC} populations in a
small sample of nearby starburst galaxies. ACS/HRC and NICMOS images
of these nearby {d 10 Mpc} starbursts can reveal evidence for mass
segregation in the form of variations in size, shape, and color of the
SSCs as a function of wavelength. The compactness of the cluster light
profiles, and hence the stellar mass distributions, is a critical
indicator of the likely fate of an SSC: long life and eventual
evolution into a globular-like cluster, or dissolution. These
observations will allow us to generate spectral energy distributions
{SEDs} for a large sample of the SSCs at all ages and extinctions in
each system. We will combine the SEDs with population synthesis models
and existing ground- based spectra and Spitzer images to estimate
ages, reddenings, and masses thus derive a more complete picture of
the star-formation histories of the galaxies. For the brightest and
most likely virialized among the SSCs we will also constrain their
initial mass functions {IMFs} using high- resolution spectroscopy.
Conclusions about IMFs from this technique require detailed
information about the SSC concentration, light profiles, and virial
status, which are only possible via ACS data. The proposed
observations will provide an extensive and comprehensive data set for
a large number of SSCs. By addressing the issues of mass segregation,
evaporation, and destruction of SSC populations, the proposed
observations will provide strong constraints on theories regarding the
processes involved in the formation and evolution of SSCs and globular
clusters. Given the dire predictions for the lifetime of HST, and its
tremendous impact on the study of SSCs, we feel that the proposed
observations not only are necessary and timely {even urgent} but will
also be a fitting { and possibly final} addition to HST's legacy in
the study of starburst SSCs.

ACS/WFC 10592

An ACS Survey of a Complete Sample of Luminous Infrared Galaxies in
the Local Universe

At luminosities above 10^11.4 L_sun, the space density of far-infrared
selected galaxies exceeds that of optically selected galaxies. These
`luminous infrared galaxies' {LIRGs} are primarily interacting or
merging disk galaxies undergoing enhanced star formation and Active
Galactic Nuclei {AGN} activity, possibly triggered as the objects
transform into massive S0 and elliptical merger remnants. We propose
ACS/WFC imaging of a complete sample of 88 L_IR 10^11.4 L_sun
luminous infrared galaxies in the IRAS Revised Bright Galaxy Sample
{RBGS: i.e., 60 micron flux density 5.24 Jy}. This sample is ideal
not only in its completeness and sample size, but also in the
proximity and brightness of the galaxies. The superb sensitivity,
resolution, and field of view of ACS/WFC on HST enables a unique
opportunity to study the detailed structure of galaxies that sample
all stages of the merger process. Imaging will be done with the F439W
and F814W filters {B and I-band} to examine as a function of both
luminosity and merger state {i} the evidence at optical wavelengths of
star formation and AGN activity and the manner in which instabilities
{bars and bridges} in the galaxies may funnel material to these active
regions, {ii} the relationship between star formation and AGN
activity, and {iii} the structural properties {AGN, bulge, and disk
components} and fundamental parameters {effective radius and surface
brightness} of LIRGs and their similarity with putative evolutionary
byproducts {elliptical, S0 and classical AGN host galaxies}. This HST
survey will also bridge the wavelength gap between a Spitzer imaging
survey {covering seven bands in the 3.6-160 micron range} and a GALEX
UV imaging survey of these galaxies, but will resolve complexes of
star clusters and multiple nuclei at resolutions well beyond the
capabilities of either Spitzer or GALEX. The combined datasets will
result in the most comprehensive multiwavelength study of interacting
and merging galaxies to date.

ACS/WFC 10588

The Host Galaxies of Post-Starburst Quasars

We propose to use ACS to conduct a snapshot imaging survey of
post-starburst quasars now being discovered in signficant numbers by
the Sloan Digital Sky Survey. Post-starburst quasars are broad-lined
AGN that also possess Balmer jumps and high-n Balmer absorption lines
indicative of luminous stellar populations on order of 100 Myr old.
These objects, representing a few percent of the z 0.5 quasar
population, may be an evolutionary stage in the transition of
ultraluminous infrared galaxies into normal quasars, or a type of
galaxy interaction that triggers both star formation and nuclear
activity. These sources may also illustrate how black hole mass/bulge
mass correlations arise. Ground-based imaging of individual
poststarburst quasars has revealed merger remnants, binary systems,
and single point sources. Our ACS snapshots will enable us to
determine morphologies and binary structure on sub-arcsecond scales
{surely present in the sample}, as well as basic host galaxy
properties. We will be looking for relationships among morphology,
particularly separation of double nuclei, the starburst age, the
quasar black hole mass and accretion rate, that will lead to an
understanding of the triggering activity and mutual evolution. This
project will bring quantitative data and statistics to the previously
fuzzy and anecdotal topic of the "AGN-starburst connection" and help
test the idea that post-starburst quasars are an early evolutionary
stage of normal quasars.

ACS/WFC 10587

Measuring the Mass Dependence of Early-Type Galaxy Structure

We propose two-color ACS-WFC Snapshot observations of a sample of 118
candidate early- type gravitational lens galaxies. Our lens-candidate
sample is selected to yield {in combination with earlier results} an
approximately uniform final distribution of 40 early-type strong
lenses across a wide range of masses, with velocity dispersions {a
dynamical proxy for mass} ranging from 125 to 300 km/s. The proposed
program will deliver the first significant sample of low-mass
gravitational lenses. All of our candidates have known lens and source
redshifts from Sloan Digital Sky Survey data, and all are bright
enough to permit detailed photometric and stellar- dynamical
observation. We will constrain the luminous and dark-matter mass
profiles of confirmed lenses using lensed-image geometry and
lens-galaxy structural/photometric measurements from HST imaging in
combination with dynamical measurements from spatially resolved
ground-based follow-up spectroscopy. Hence we will determine, in
unprecedented detail, the dependence of early-type galaxy mass
structure and mass-to-light ratio upon galaxy mass. These results will
allow us to directly test theoretical predictions for halo
concentration and star-formation efficiency as a function of mass and
for the existence of a cuspy inner dark- matter component, and will
illuminate the structural explanation behind the fundamental plane of
early-type galaxies. The lens-candidate selection and confirmation
strategy that we propose has been proven successful for high-mass
galaxies by our Cycle 13 Snapshot program {10174}. The program that we
propose here will produce a complementary and unprecedented lens
sample spanning a wide range of lens-galaxy masses.

ACS/HRC 10556

Neutral Gas at Redshift z=0.5

Damped Lyman-alpha systems {DLAs} are used to track the bulk of the
neutral hydrogen gas in the Universe. Prior to HST UV spectroscopy,
they could only be studied from the ground at redshifts z1.65.
However, HST has now permitted us to discover 41 DLAs at z1.65 in our
previous surveys. Followup studies of these systems are providing a
wealth of information about the evolution of the neutral gas phase
component of the Universe. But one problem is that these 41
low-redshift systems are spread over a wide range of redshifts
spanning nearly 70% of the age of the Universe. Consequently, past
surveys for low-redshift DLAs have not been able to offer very good
precision in any small redshift regime. Here we propose an ACS-HRC-
PR200L spectroscopic survey in the redshift interval z=[0.37, 0.7]
which we estimate will permit us to discover another 41 DLAs. This
will not only allow us to double the number of low-redshift DLAs, but
it will also provide a relatively high-precision regime in the
low-redshift Universe that can be used to anchor evolutionary studies.
Fortunately DLAs have high absorption equivalent width, so
ACS-HRC-PR200L has high-enough resoultion to perform this proposed
MgII-selected DLA survey.

ACS/WFC 10550

The Nature of LSB galaxies revealed by their Globular Clusters

Low Surface Brightness {LSB} galaxies encompass many of the extremes
in galaxy properties. Their understanding is essential to complete our
picture of galaxy formation and evolution. Due to their historical
under-representation on galaxy surveys, their importance to many areas
of astronomy has only recently began to be realized. Globular clusters
are superb tracers of the formation histories of galaxies and have
been extensively used as such in high surface brightness galaxies. We
propose to investigate the nature of massive LSB galaxies by studying
their globular cluster systems. No globular cluster study has been
reported for LSB galaxies to date. Yet, both the presence or absence
of globular clusters set very strong constraints on the conditions
prevailing during LSB galaxy formation and evolution. Both in dwarf
and giant high surface brightness {HSB} galaxies, globular clusters
are known to form as a constant fraction of baryonic mass. Their
presence/absence immediately indicates similarities or discrepancies
in the formation and evolution conditions of LSB and HSB galaxies. In
particular, the presence/absence of metal-poor halo globular clusters
infers similarities/differences in the halo formation and assembly
processes of LSB vs. HSB galaxies, while the presence/absence of
metal-rich globular clusters can be used to derive the occurrence and
frequency of violent events {such as mergers} in the LSB galaxy
assembly history. Two band imaging with ACS will allow us to identify
the globular clusters {just resolved at the selected distance} and to
determine their metallicity {potentially their rough age}. The
composition of the systems will be compared to the extensive census
built up on HSB galaxies. Our representative sample of six LSB
galaxies {cz 2700 km/s} are selected such, that a large system of
globular clusters is expected. Globular clusters will constrain phases
of LSB galaxy formation and evolution that can currently not be probed
by other means. HST/ACS imaging is the only facility capable of
studying the globular cluster systems of LSB galaxies given their
distance and relative scarcity.

ACS/WFC 10494

Imaging the mass structure of distant lens galaxies

The surface brightness distribution of extended gravitationally lensed
arcs and Einstein rings contains super-resolved information about the
lensed object, and, more excitingly, about the smooth and clumpy mass
distribution of the lens galaxies. The source and lens information can
non-parametrically be separated, resulting in a direct
"gravitational-mass image" of the inner mass-distribution of
cosmologically-distant galaxies {Koopmans 2005}. With this goal in
mind, we propose deep HST ACS-F555W/F814W and NICMOS-F160W imaging of
15 gravitational-lens systems with spatially resolved lensed sources,
selected from the 17 new lens systems discovered by the Sloan Lens ACS
Survey {Bolton et al. 2004}. Each system has been selected from the
SDSS and confirmed in a time-efficient HST-ACS snapshot program
{cycle-13}; they show highly-magnified arcs or Einstein rings, lensed
by a massive early-type lens galaxy. High- fidelity multi-color HST
images are required {not delivered by the 420-sec snapshot images} to
isolate these lensed images {properly cleaned, dithered and
extinction-corrected} from the lens galaxy surface brightness
distribution, and apply our "gravitational-mass imaging" technique.
The sample of galaxy mass distributions - determined through this
method from the arcs and Einstein ring HST images - will be studied
to: {i} measure the smooth mass distribution of the lens galaxies
{Dark and luminous mass are separated using the HST images and the
stellar M/L values derived from a joint stellar-dynamical analysis of
each system}; {ii} quantify statistically and individually the
incidence of mass-substructure {with or without obvious luminous
counter- parts such as dwarf galaxies}. Since dark-matter substructure
should be considerably more prevalent at higher redshift, both results
provide a direct test of this prediction of the CDM hierarchical
structure-formation model.

WFPC2 10492

A detailed study of the mass properties for the galaxy cluster RX
J1347-1145

We propose to obtain deep, multi-colour imaging for the galaxy cluster
RX J1347-1145 at z=0.45. Together with our high-quality ground-based
optical and X-ray data sets already at hand this observation will
produce a precise mass determination of this most X-ray luminous
cluster. The analysis will mainly be carried out by a newly developed
and novel technique that combines weak and strong lensing information
and which is able to break the mass-sheet degeneracy that hampered
most previous lensing mass determinations. Within our extensive
campaign to understand the mass properties of RX J1347-1145, the main
goal of the ACS images will be a refined, high-resolution lensing mass
reconstruction of the cluster core. This will be achieved by a
substantially increased number density of background sources for a
weak lensing analysis in combination with constraints from multiply
lensed images that are identified with morphology and colour
information. Both of these require the unique resolving power of ACS.
RX J1347-1145 is an ideal candidate for elucidating the discrepant
mass estimates obtained from traditional methods. It plays the same
role at high redshift as A1689 at intermediate redshifts for which a
similar analysis has been performed with ACS. Our results will
therefore be an important ingredient in the use of galaxy clusters as
cosmological probes.

NIC2 10448

NICMOS 2-gyro Coronagraphic Performance Assessment

Coronagraphic acquisition should not be affected by transitioning from
3-gyro to 2-gyro mode guiding. However, coronagraphic performance is
dependent upon positioning of a target within the coronagraphic hole
and the ability to obtain a second observation with a roll of the
telescope within the same visibility period. Observations of a bright
target are needed to verify and confirm the coronagraphic performance,
the ability to suppress the diffractive energy background and the
stability to image coronagraphically occulted targets at two field
orientations {rolls}.

ACS/WFC 10374

ACS photometric Stability

This program consists of three parts. In the first part we will
observe a subset of the ACS white dwarfs with HRC and ACS to verify
repeatability to ~0.2%, because the filter shifts are based on
photometric differences between stars of ~1%. These observations are
also required to establish relative magnitudes of the primary WD
standards at the 0.1% level. Targets should be GD153 and G191B2B,
which seems to have the largest V mag error of ~0.008 mag. One orbit
on the most important filters, including the grism and the prisms,
should be expended with each camera for both stars for a total of 4
orbits. In the second part will observe with HRC and WFC a solar
analog star, P330E, to estimate any shifts in the short and the long
wavelength cutoffs of selected filters. Complete filter bandpasses can
be derived directly from the ratio of grism observations with and
without the filter in place. The grism is on filter wheel 1, while
four filters of interest F330W, F344N, F660N, and F814W are on wheel
2. Each grism observation requires 3 settings: filter alone,
filter+grism, and grism alone. In the third part we obtain high S/N
photometric and spectroscopic observations of three red stars, VB-8
{M7}, 2M0038+18 {L3.5} and 2M0559-14 {T5} with HRC and WFC to verify
the photometry at the new standard position and to obtain accurate
calibration {1% or better} of the grism spectra.

ACS/WFC 10135

Unveiling the Progenitors and Physics of Cosmic Explosions

GRBs and XRFs are clearly highly asymmetric explosions and require a
long-lived power source {central engine}. In contrast, nearby
core-collapse events are essentially spherical explosions. However,
the failure of spherical neutrino driven collapses has led to the idea
that asymmetric energy release is essential for the explosion. The
recent finding of a Type Ic SN in GRB 030329, the association of the
low energy event GRB 980425 with SN 1998bw, the theoretical
development discussed above and the rise of collapsar models make it
timely to consider whether all these explosions contain engines. Given
the uncertainties in theoretical modeling it is clear that
observations are needed to guide models. A priori there is little
reason to expect connection between the ultra-relativistic jet that
powers the GRB and the explosive nucleosynthesis of the ~0.5 solar
masses of Nickel-56 that powers the accompanying supernova. We propose
a comprehensive program of ACS photometric searches {and measurements}
for SNe associated with GRBs and XRFs. In concert, we will undertake
ground- based spectroscopy to determine velocity widths, and measure
engine parameters from pan- chromatic afterglow observations. Our goal
is to produce a comprehensive database of engine and SN physical
parameters against which theoretical modeling will be guided.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.)

HSTARS:

10162 - GSAcq(1,3,1) failed to RGA Control at AOS without indication
flag @ 070/15:38:46z

At acquisition of signal 070/16:49:25, the GSAcq(1,3,1) of
070/15:38:46 - 15:46:51 failed to RGA Control without indication
flag(s). ESB Dump at 070/18:25:11 showed 486 ESB 1902
(OBAD_Failed_ID)received at 070/15:29:18 caused uncorrected attitude
error introduced and prevented an FGS acquisition attempt.

10166 - GSAcq(2,1,2) failed to RGA control due to search radius limit
exceeded on FGS-2 @ 071/16:35:01z

At acquisition of signal the GSAcq(2,1,2)scheduled for 071/15:38:47
showed failed to RGA control, due to scan step limit exceeded on
FGS-2. 486 ESB Dump at 071/16:44:33, showed ESB 1805
(T2G_MOVING_TARGET_DETECTED) was received at 071/15:37:30. OBAB/MAP at
071/15:46:51 had 3-axis (RSS) value of 127:57 arcseconds.

COMPLETED OPS REQUEST:
17663-0 - MILA Proficiency Pass @ 069/2150z
17664-0 - GENSLEW for proposal 10114 - slot 2 @ 069/1614z

COMPLETED OPS NOTES: (None)

SCHEDULED SUCCESSFUL FAILURE TIMES
FGS GSacq 22 20 (HSTAR
# 10162)
(HSTAR
# 10166)
FGS REacq 21 21

OBAD with Maneuver 80 79 (HSTAR #
10162)

SIGNIFICANT EVENTS: (None)

 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
OhOh, Say, Can You See? Ed Conrad Misc 6 January 27th 06 08:41 PM
Judge Jones Has Been Reading the Wrong Books -- Intelligent Design vs. Evolution... Ed Conrad Amateur Astronomy 0 December 22nd 05 09:38 AM
BEST CHRISTMAS PRESENT OF THEM ALL . . . Ed Conrad Amateur Astronomy 10 December 21st 05 01:55 PM
THE BEST CHRISTMAS PRESENT OF ALL Ed Conrad Astronomy Misc 2 December 20th 05 02:31 AM
Ed Conrad's NEW Letter to Prof. Michael Behe Ed Conrad Astronomy Misc 0 June 21st 05 10:50 AM


All times are GMT +1. The time now is 01:17 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.