A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily Report #4934



 
 
Thread Tools Display Modes
  #1  
Old September 21st 09, 02:11 PM posted to sci.astro.hubble
Cooper, Joe
external usenet poster
 
Posts: 568
Default Daily Report #4934

HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science

DAILY REPORT #4934

PERIOD COVERED: 5am September 18 - 5am September 21, 2009 (DOY 261/09:00z-264/09:00z)

OBSERVATIONS SCHEDULED

NIC1/NIC2/NIC3 8795

NICMOS Post-SAA Calibration - CR Persistence Part 6

This is a new procedure proposed to alleviate the CR-persistence
problem of NICMOS. Dark frames will be obtained immediately upon
exiting the SAA contour 23, and every time a NICMOS exposure is
scheduled within 50 minutes of coming out of the SAA. The darks will
be obtained in parallel in all three NICMOS cameras. The post-SAA
darks will be non-standard reference files available to users with a
'Use After' date/time mark. The keyword 'UseAfter=date/time' will also
be added to the header of each post-SAA dark frame. The keyword must
be populated with the time, in addition to the date, because HST
crosses the SAA ~8 times per day, so each post-SAA dark will need to
have the appropriate time specified, for users to identify the ones
they need. Both the raw and processed images will be archived as
post-SAA darks. Generally we expect that all NICMOS
science/calibration observations started within 50 minutes of leaving
an SAA will need such MAPs to remove the CR persistence from the
science images. Each observation will need its own CRMAP, as different
SAA passages leave different imprints on the NICMOS detectors.

NIC1/NIC2/NIC3 11947

Extended Dark Monitoring

This program takes a series of darks to obtain darks (including
amplifier glow, dark current, and shading profiles) for all three
cameras in the read-out sequences used in Cycle 17. A set of 12 orbits
will be observed every two months for a total of 72 orbits for a 12
month Cycle 17. This is a continuation of Cycle 16 program 11330
scaled down by ~80%.

The first orbit (Visit A0) should be scheduled in the NICMOS SMOV
after the DC Transfer Test (11406) and at least 36h before the Filter
Wheel Test (11407). Data download using fast track.

The following 28 orbits (visit A1-N2) should be scheduled AFTER the
SMOV Proposal 11407 (Filter Wheel Test). This is done in order to
monitor the dark current following an adjustment of the NCS set-point.
These visits should be executed until the final temperature is reached
during SMOV.

WFC3/IR/S/C 11929

IR Dark Current Monitor

Analyses of ground test data showed that dark current signals are more
reliably removed from science data using darks taken with the same
exposure sequences as the science data, than with a single dark
current image scaled by desired exposure time. Therefore, dark current
images must be collected using all sample sequences that will be used
in science observations. These observations will be used to monitor
changes in the dark current of the WFC3-IR channel on a day-to-day
basis, and to build calibration dark current ramps for each of the
sample sequences to be used by GOs in Cycle 17. For each sample
sequence/array size combination, a median ramp will be created and
delivered to the calibration database system (CDBS).

WFC3/UVIS 11925

UVIS Detector Linearity

This proposal will measure the in-orbit linear response of the UVIS
detectors by sampling over the response curve through saturation. This
program uses exposures of a standard star field (NGC 1850) to measure
the absolute values, and exposures of a tungsten lamp to measure
positional variations in response, following a similar procedure as
the ground tests.

WFC3/IR 11915

IR Internal Flat Fields

This program is the same as 11433 (SMOV) and depends on the completion
of the IR initial alignment (Program 11425). This version contains
three instances of 37 internal orbits: to be scheduled early, middle,
and near the end of Cycle 17, in order to use the entire 110-orbit
allocation.

In this test, we will study the stability and structure of the IR
channel flat field images through all filter elements in the WFC3-IR
channel. Flats will be monitored, i.e. to capture any temporal trends
in the flat fields and delta flats produced. High signal observations
will provide a map of the pixel-to-pixel flat field structure, as well
as identify the positions of any dust particles.

WFC3/UVIS 11912

UVIS Internal Flats

This proposal will be used to assess the stability of the flat field
structure for the UVIS detector throughout the 15 months of Cycle 17.
The data will be used to generate on- orbit updates for the delta-flat
field reference files used in the WFC3 calibration pipeline, if
significant changes in the flat structure are seen.

WFC3/UVIS 11908

Cycle 17: UVIS Bowtie Monitor

Ground testing revealed an intermittent hysteresis type effect in the
UVIS detector (both CCDs) at the level of ~1%, lasting hours to days.
Initially found via an unexpected bowtie-shaped feature in flatfield
ratios, subsequent lab tests on similar e2v devices have since shown
that it is also present as simply an overall offset across the entire
CCD, i.e., a QE offset without any discernable pattern. These lab
tests have further revealed that overexposing the detector to count
levels several times full well fills the traps and effectively
neutralizes the bowtie. Each visit in this proposal acquires a set of
three 3x3 binned internal flatfields: the first unsaturated image will
be used to detect any bowtie, the second, highly exposed image will
neutralize the bowtie if it is present, and the final image will allow
for verification that the bowtie is gone.

WFC3/UVIS 11905

WFC3 UVIS CCD Daily Monitor

The behavior of the WFC3 UVIS CCD will be monitored daily with a set
of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K
subarray biases are acquired at less frequent intervals throughout the
cycle to support subarray science observations. The internals from
this proposal, along with those from the anneal procedure (Proposal
11909), will be used to generate the necessary superbias and superdark
reference files for the calibration pipeline (CDBS).

ACS/WFC3 11879

CCD Daily Monitor (Part 1)

This program comprises basic tests for measuring the read noise and
dark current of the ACS WFC and for tracking the growth of hot pixels.
The recorded frames are used to create bias and dark reference images
for science data reduction and calibration. This program will be
executed four days per week (Mon, Wed, Fri, Sun) for the duration of
Cycle 17. To facilitate scheduling, this program is split into three
proposals. This proposal covers 352 orbits (22 weeks) from 31 August
2009 to 31 January 2010.

STIS/CCD 11846

CCD Bias Monitor-Part 1

The purpose of this proposal is to monitor the bias in the 1x1, 1x2,
2x1, and 2x2 bin settings at gain=1, and 1x1 at gain = 4, to build up
high-S/N superbiases and track the evolution of hot columns.

STIS/CCD 11844

CCD Dark Monitor Part 1

The purpose of this proposal is to monitor the darks for the STIS CCD.

FGS 11789

An Astrometric Calibration of Population II Distance Indicators

In 2002, HST produced a highly precise parallax for RR Lyrae. That
measurement resulted in an absolute magnitude, M(V)= 0.61+/-0.11, a
useful result, judged by the over ten refereed citations each year
since. It is, however, unsatisfactory to have the direct,
parallax-based, distance scale of Population II variables based on a
single star. We propose, therefore, to obtain the parallaxes of four
additional RR Lyrae stars and two Population II Cepheids, or W Vir
stars. The Population II Cepheids lie with the RR Lyrae stars on a
common K-band Period-Luminosity relation. Using these parallaxes to
inform that relationship, we anticipate a zero-point error of 0.04
magnitude. This result should greatly strengthen confidence in the
Population II distance scale and increase our understanding of RR
Lyrae star and Pop. II Cepheid astrophysics.

FGS 11788

The Architecture of Exoplanetary Systems

Are all planetary systems coplanar? Concordance cosmogony makes that
prediction. It is, however, a prediction of extrasolar planetary
system architecture as yet untested by direct observation for main
sequence stars other than the Sun. To provide such a test, we propose
to carry out FGS astrometric studies on four stars hosting seven
companions. Our understanding of the planet formation process will
grow as we match not only system architecture, but formed planet mass
and true distance from the primary with host star characteristics for
a wide variety of host stars and exoplanet masses.

We propose that a series of FGS astrometric observations with
demonstrated 1 millisecond of arc per-observation precision can
establish the degree of coplanarity and component true masses for four
extrasolar systems: HD 202206 (brown dwarf+planet); HD 128311
(planet+planet), HD 160691 = mu Arae (planet+planet), and HD 222404AB
= gamma Cephei (planet+star). In each case the companion is identified
as such by assuming that the minimum mass is the actual mass. For the
last target, a known stellar binary system, the companion orbit is
stable only if coplanar with the AB binary orbit.

FGS 11704

The Ages of Globular Clusters and the Population II Distance Scale

Globular clusters are the oldest objects in the universe whose age can
be accurately determined. The dominant error in globular cluster age
determinations is the uncertain Population II distance scale. We
propose to use FGS 1R to obtain parallaxes with an accuracy of 0.2
milliarcsecond for 9 main sequence stars with [Fe/H] -1.5. This will
determine the absolute magnitude of these stars with accuracies of
0.04 to 0.06mag. This data will be used to determine the distance to
24 metal-poor globular clusters using main sequence fitting. These
distances (with errors of 0.05 mag) will be used to determine the ages
of globular clusters using the luminosity of the subgiant branch as an
age indicator. This will yield absolute ages with an accuracy of 5%,
about a factor of two improvement over current estimates. Coupled with
existing parallaxes for more metal-rich stars, we will be able to
accurately determine the age for globular clusters over a wide range
of metallicities in order to study the early formation history of the
Milky Way and provide an independent estimate of the age of the
universe.

The Hipparcos database contains only 1 star with [Fe/H] -1.4 and an
absolute magnitude error less than 0.18 mag which is suitable for use
in main sequence fitting. Previous attempts at main sequence fitting
to metal-poor globular clusters have had to rely on theoretical
calibrations of the color of the main sequence. Our HST parallax
program will remove this source of possible systematic error and yield
distances to metal- poor globular clusters which are significantly
more accurate than possible with the current parallax data. The HST
parallax data will have errors which are 10 times smaller than the
current parallax data. Using the HST parallaxes, we will obtain main
sequence fitting distances to 11 globular clusters which contain over
500 RR Lyrae stars. This will allow us to calibrate the absolute
magnitude of RR Lyrae stars, a commonly used Population II distance
indicator.

ACS/WFC3 11670

The Host Environments of Type Ia Supernovae in the SDSS Survey

The Sloan Digital Sky Survey Supernova Survey has discovered nearly
500 type Ia supernovae and created a large, unique, and uniform sample
of these cosmological tools. As part of a comprehensive study of the
supernova hosts, we propose to obtain Hubble ACS images of a large
fraction of these galaxies. Integrated colors and spectra will be
measured from the ground, but we require high-resolution HST imaging
to provide accurate morphologies and color information at the site of
the explosion. This information is essential in determining the
systematic effects of population age on type Ia supernova luminosities
and improving their reliability in measuring dark energy. Recent
studies suggest two populations of type Ia supernovae: a class that
explodes promptly after star-formation and one that is delayed by
billions of years. Measuring the star-formation rate at the site of
the supernova from colors in the HST images may be the best way to
differentiate between these classes.

WFC3/UVIS 11594

A WFC3 Grism Survey for Lyman Limit Absorption at z=2

We propose to conduct a spectroscopic survey of Lyman limit absorbers
at redshifts 1.8 z 2.5, using WFC3 and the G280 grism. This
proposal intends to complete an approved Cycle 15 SNAP program
(10878), which was cut short due to the ACS failure. We have selected
64 quasars at 2.3 z 2.6 from the Sloan Digital Sky Survey
Spectroscopic Quasar Sample, for which no BAL signature is found at
the QSO redshift and no strong metal absorption lines are present at z
2.3 along the lines of sight. The survey has three main

observational goals. First, we will determine the redshift frequency
dn/dz of the LLS over the column density range 16.0 log(NHI) 20.3
cm^-2. Second, we will measure the column density frequency
distribution f(N) for the partial Lyman limit systems (PLLS) over the
column density range 16.0 log(NHI) 17.5 cm^-2. Third, we will
identify those sightlines which could provide a measurement of the
primordial D/H ratio. By carrying out this survey, we can also help
place meaningful constraints on two key quantities of cosmological
relevance. First, we will estimate the amount of metals in the LLS
using the f(N), and ground based observations of metal line
transitions. Second, by determining f(N) of the PLLS, we can constrain
the amplitude of the ionizing UV background at z~2 to a greater
precision. This survey is ideal for a snapshot observing program,
because the on-object integration times are all well below 30 minutes,
and follow-up observations from the ground require minimal telescope
time due to the QSO sample being bright.

WFC3/UVIS 11559

Jovian Upheaval and Its Impact on Vortices

We propose observations of Jupiter with global coverage at high
resolution to quantify changes in its atmosphere during and following
the global upheaval. Only HST has the capability to obtain images with
enough spatial resolution and contrast to extract velocity fields (we
will use our newly developed technique to accomplish this), and with
WFC3 we can image Jupiter in its entirety in a single exposure. We are
in particular interested in the Red Oval BA: Will the Oval be long
lived, remain red, or turn white again, disappear? Both the merger of
its precursors, and change in color has never before been witnessed.
The Great Red Spot: This storm system appears to decrease in size and
has become rounder, both as derived from its associated cloud deck,
but also from its potential vorticity, a more dynamically-relevant
quantity. How will the GRS evolve? Will it swallow the new vortices
detected in amateur images at this same latitude band? How will this
effect the potential vorticity? In addition, we hope to understand
disturbances and stagnation points, both of which were detected during
the present global upheaval: are these cyclonic regions, can they
spawn anticyclones (as suggested by amateur images)?

COS/NUV/FUV/WFC3/UVIS/IR 11534

COS-GTO: Atmosphere of a Transiting Planet

COS observations of a transiting planet at different orbital locations
will be useful in identifying the chemical content, size, temperature,
and flows in the atmosphere of a transiting planet.

COS/NUV/FUV 11487

COS FUV Internal/External Wavelength Scales

Observe external radial velocity standard targets in Time-Tag
(Flash=Yes) mode with all grating and central wavelength combinations.
The purpose is to obtain zero point offsets for the wavelength scale
(internal wavecal lamp scale to external standard wavelength scale)
and PSA dispersion relations for all central wavelengths.

Following this determination, adjustments of the nominal science
target spectral range for each grating and central wavelength
combination will be made via SMS-patchable constant for nominal OSM1
positions corresponding to each central wavelength. Subsequent to this
modification of the wavelength scale (and its verification via
analysis of COS30 - Program 11488), FUV science-related operations and
wavelength- dependent EROs can commence.

COS/NUV 11471

COS NUV Imaging Acquisition Algorithm Verification

The purpose of this proposal is to verify the ability of the COS FSW
to place an isolated point source at the center of the aperture, both
for the BOA and PSA, and for Mirror A and Mirror B. The various
options for target centering should be exercised and shown to work
properly. This test is for acquisitions in imaging mode only.
Acquisitions using dispersed light are tested in separate SMOV
activities.

NIC1/NIC2/NIC3/S/C 11407

NICMOS Filter Wheel Test

This is an engineering test (described in SMOV4 Activity Description
NICMOS-04) to verify the aliveness, functionality, operability, and
electro-mechanical calibration of the NICMOS filter wheel motors and
assembly after NCS restart in SMOV4. This test has been designed to
obviate concerns over possible deformation or breakage of the filter
wheel "soda-straw" shafts due to excess rotational drag torque and/or
bending moments which may be imparted due to changes in the dewar
metrology from warm-up/cool- down. This test should be executed after
the NCS (and filter wheel housing) has reached and approximately
equilibrated to its nominal operating temperature.

WFC3/ACS/IR 11359

Panchromatic WFC3 Survey of Galaxies at Intermediate z: Early Release
Science Program for Wide Field Camera 3.

The unique panchromatic capabilities of WFC3 will be used to survey
the structure and evolution of galaxies at the peak of the galaxy
assembly epoch. Deep ultraviolet and near-IR imaging and slitless
spectroscopy of existing deep multi-color ACS fields will be used to
gauge star-formation and the growth of stellar mass as a function of
morphology, structure and surrounding density in the critical epoch 1
z 4. Images in the F225W, F275W, and F336W filters will identify
galaxies at z 1.5 from their UV continuum breaks, and provide
star-formation indicators tied directly to both local and z 3
populations. Deep near-IR (F125W and F160W) images will probe the
stellar mass function well below 10^9 Msun for mass-complete samples.
Lastly, the WFC3 slitless UV and near-IR grisms will be used to
measure redshifts and star-formation rates from H- alpha and
rest-frame UV continuum slope. This WFC3 ERS program will survey one 4
x 2 mosaic for a total area of 50 square arcminutes to 5-sigma depths
of m_AB = 27 in most filters from the mid-UV through the near-IR.

This multicolor high spatial resolution data set will allow the user
to gauge the growth of galaxies through star-formation and merging.
High precision photometric and low- resolution spectroscopic redshifts
will allow accurate determinations of the faint-end of the luminosity
and mass functions, and will shed light on merging and tidal
disruption of stellar and gaseous disks. The WFC3 images will also
allow detailed studies of the internal structure of galaxies, and the
distribution of young and old stellar populations. This program will
demonstrate the unique power of WFC3 by applying its many diverse
modes and full panchromatic capability to a forefront problem in
astrophysics.

FGS 11213

Distances to Eclipsing M Dwarf Binaries

We propose HST FGS observations to measure accurate distances of 5
nearby M dwarf eclipsing binary systems, from which model-independent
luminosities can be calculated. These objects have either poor or no
existing parallax measurements. FGS parallax determinations for these
systems, with their existing dynamic masses determined to better than
0.5%, would serve as model-independent anchor points for the low-mass
end of the mass-luminosity diagram.

WFC3/ACS/IR 11142

Revealing the Physical Nature of Infrared Luminous Galaxies at
0.3z2.7 Using HST and Spitzer

We aim to determine physical properties of IR luminous galaxies at
0.3z2.7 by requesting coordinated HST/NIC2 and MIPS 70um
observations of a unique, 24um flux- limited sample with complete
Spitzer mid-IR spectroscopy. The 150 sources investigated in this
program have S(24um) 0.8mJy and their mid-IR spectra have already
provided the majority targets with spectroscopic redshifts
(0.3z2.7). The proposed 150~orbits of NIC2 and 66~hours of MIPS 70um
will provide the physical measurements of the light distribution at
the rest-frame ~8000A and better estimates of the bolometric
luminosity. Combining these parameters together with the rich suite of
spectral diagnostics from the mid-IR spectra, we will (1) measure how
common mergers are among LIRGs and ULIRGs at 0.3z2.7, and establish
if major mergers are the drivers of z1 ULIRGs, as in the local
Universe, (2) study the co-evolution of star formation and blackhole
accretion by investigating the relations between the fraction of
starburst/AGN measured from mid-IR spectra vs. HST morphologies,
L(bol) and z, and (3) obtain the current best estimates of the far-IR
emission, thus L(bol) for this sample, and establish if the relative
contribution of mid-to-far IR dust emission is correlated with
morphology (resolved vs. unresolved).

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.)

HSTARS:

12014 - GSAcq(2,1,1) scheduled at 261/16:17:51z failed to RGA Hold
(gyro control) with Search Radius Limit Exceeded on FGS-2 at
261/16:23:06z.

Observations affected: WFC3 111 - 114, Proposal ID# 11559

12015 - GSAcq (1,2,1) scheduled from 263/04:26:41z - 04:33:41z
resulted in Fine Lock Back-up (2,0,2) at 263/04:31:43z using FGS 2

Observations possibly affected: WFC3 165 - 166, Proposal ID# 11594.

COMPLETED OPS REQUEST:

18706-0 - Set up Tasking orders for NICMOS FW test @ 261/1551z
18707-0 - Configure Tasking Orders after FW test EDD dumps completed @ 261/2312z
18708-1 - Enable NICMOS Filter Wheel flag to continue test @ 262/1742z

COMPLETED OPS NOTES: (None)

SCHEDULED SUCCESSFUL
FGS GSAcq 24 23
FGS REAcq 17 17
OBAD with Maneuver 25 25

SIGNIFICANT EVENTS: (None)

 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Daily Report Cooper, Joe Hubble 0 December 22nd 08 06:17 PM
Daily Report #4380 Cooper, Joe Hubble 0 June 11th 07 04:20 PM
DAILY REPORT #3910 Lynn Bassford Hubble 0 July 27th 05 10:52 PM
Daily Report [email protected] Hubble 0 October 29th 04 04:59 PM
HST Daily Report 131 George Barbehenn Hubble 0 May 11th 04 02:48 PM


All times are GMT +1. The time now is 03:43 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.