A Space & astronomy forum. SpaceBanter.com

Go Back   Home » SpaceBanter.com forum » Astronomy and Astrophysics » Hubble
Site Map Home Authors List Search Today's Posts Mark Forums Read Web Partners

Daily Report #5160



 
 
Thread Tools Display Modes
  #1  
Old August 16th 10, 12:44 PM posted to sci.astro.hubble
Cooper, Joe
external usenet poster
 
Posts: 568
Default Daily Report #5160

HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science

DAILY REPORT #5160

PERIOD COVERED: 5am August 13 - 5am August 16, 2010 (DOY 225/09:00z-228/09:00z)

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.)

HSTARS: (None)

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)

SCHEDULED SUCCESSFUL
FGS GSAcq 25 25
FGS REAcq 21 21
OBAD with Maneuver 21 21

SIGNIFICANT EVENTS: (None)


OBSERVATIONS SCHEDULED

ACS/WFC/WFC3/IR/UV 12056

A Panchromatic Hubble Andromeda Treasury - I

We propose to image the north east quadrant of M31 to deep limits in
the UV, optical, and near-IR. HST imaging should resolve the galaxy
into more than 100 million stars, all with common distances and
foreground extinctions. UV through NIR stellar photometry (F275W,
F336W with WFC3/UVIS, F475W and F814W with ACS/WFC, and F110W and
F160W with WFC3/NIR) will provide effective temperatures for a wide
range of spectral types, while simultaneously mapping M31's
extinction. Our central science drivers are to: understand high-mass
variations in the stellar IMF as a function of SFR intensity and
metallicity; capture the spatially-resolved star formation history of
M31; study a vast sample of stellar clusters with a range of ages and
metallicities. These are central to understanding stellar evolution
and clustered star formation; constraining ISM energetics; and
understanding the counterparts and environments of transient objects
(novae, SNe, variable stars, x-ray sources, etc.). As its legacy, this
survey adds M31 to the Milky Way and Magellanic Clouds as a
fundamental calibrator of stellar evolution and star-formation
processes for understanding the stellar populations of distant
galaxies. Effective exposure times are 977s in F275W, 1368s in F336W,
4040s in F475W, 4042s in F814W, 699s in F110W, and 1796s in F160W,
including short exposures to avoid saturation of bright sources. These
depths will produce photon-limited images in the UV. Images will be
crowding-limited in the optical and NIR, but will reach below the red
clump at all radii. The images will reach the Nyquist sampling limit
in F160W, F475W, and F814W.

S/C 12046

COS FUV DCE Memory Dump

Whenever the FUV detector high voltage is on, count rate and current
draw information is collected, monitored, and saved to DCE memory.
Every 10 msec the detector samples the currents from the HV power
supplies (HVIA, HVIB) and the AUX power supply (AUXI). The last 1000
samples are saved in memory, along with a histogram of the number of
occurrences of each current value.

In the case of a HV transient (known as a "crackle" on FUSE), where
one of these currents exceeds a preset threshold for a persistence
time, the HV will shut down, and the DCE memory will be dumped and
examined as part of the recovery procedure. However, if the current
exceeds the threshold for less than the persistence time (a
"mini-crackle" in FUSE parlance), there is no way to know without
dumping DCE memory. By dumping and examining the histograms regularly,
we will be able to monitor any changes in the rate of "mini-crackles"
and thus learn something about the state of the detector.

WFC3/UV 12008

Primordial formation of Close Binaries in Globular Clusters with Low
Density Cores

The primordial binary population is a key input parameter for any
realistic model of dense star cluster dynamics. However, the number of
primordial binaries and its direct implications for the formation rate
of close binaries remain poorly understood. Theoretical calculations
show that cataclysmic variables can be formed directly from primordial
binaries in or near the core of low core density globular clusters. We
propose to use Chandra/HST to study low density core globular clusters
systematically and to test the prediction that low-luminosity X-ray
sources can be formed from primordial binaries in the cluster core.
This project will complement our successful Chandra/HST program to
study the dynamical formation of X-ray sources in high core density
globular clusters.

ACS/WFC 11996

CCD Daily Monitor (Part 3)

This program comprises basic tests for measuring the read noise and
dark current of the ACS WFC and for tracking the growth of hot pixels.
The recorded frames are used to create bias and dark reference images
for science data reduction and calibration. This program will be
executed four days per week (Mon, Wed, Fri, Sun) for the duration of
Cycle 17. To facilitate scheduling, this program is split into three
proposals. This proposal covers 308 orbits (19.25 weeks) from 21 June
2010 to 1 November 2010.

WFC3/IR/S/C 11929

IR Dark Current Monitor

Analyses of ground test data showed that dark current signals are more
reliably removed from science data using darks taken with the same
exposure sequences as the science data, than with a single dark
current image scaled by desired exposure time. Therefore, dark current
images must be collected using all sample sequences that will be used
in science observations. These observations will be used to monitor
changes in the dark current of the WFC3-IR channel on a day-to-day
basis, and to build calibration dark current ramps for each of the
sample sequences to be used by Gos in Cycle 17. For each sample
sequence/array size combination, a median ramp will be created and
delivered to the calibration database system (CDBS).

WFC3/UVIS 11908

Cycle 17: UVIS Bowtie Monitor

Ground testing revealed an intermittent hysteresis type effect in the
UVIS detector (both CCDs) at the level of ~1%, lasting hours to days.
Initially found via an unexpected bowtie-shaped feature in flatfield
ratios, subsequent lab tests on similar e2v devices have since shown
that it is also present as simply an overall offset across the entire
CCD, i.e., a QE offset without any discernable pattern. These lab
tests have further revealed that overexposing the detector to count
levels several times full well fills the traps and effectively
neutralizes the bowtie. Each visit in this proposal acquires a set of
three 3x3 binned internal flatfields: the first unsaturated image will
be used to detect any bowtie, the second, highly exposed image will
neutralize the bowtie if it is present, and the final image will allow
for verification that the bowtie is gone.

WFC3/UVIS 11907

UVIS Cycle 17 Contamination Monitor

The UV throughput of WFC3 during Cycle 17 is monitored via weekly
standard star observations in a subset of key filters covering
200-600nm and F606W, F814W as controls on the red end. The data will
provide a measure of throughput levels as a function of time and
wavelength, allowing for detection of the presence of possible
contaminants.

WFC3/UVIS 11905

WFC3 UVIS CCD Daily Monitor

The behavior of the WFC3 UVIS CCD will be monitored daily with a set
of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K
subarray biases are acquired at less frequent intervals throughout the
cycle to support subarray science observations. The internals from
this proposal, along with those from the anneal procedure (Proposal
11909), will be used to generate the necessary superbias and superdark
reference files for the calibration pipeline (CDBS).

STIS/CCD 11847

CCD Bias Monitor-Part 2

Monitor the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1,
and 1x1 at gain = 4, to build up high-S/N superbiases and track the
evolution of hot columns.

STIS/CCD 11845

CCD Dark Monitor Part 2

Monitor the darks for the STIS CCD.

WFC3/ACS/IR 11677

Is 47 Tuc Young? Measuring its White Dwarf Cooling Age and Completing
a Hubble Legacy

With this proposal we will firmly establish the age of 47 Tuc from its
cooling white dwarfs. 47 Tuc is the nearest and least reddened of the
metal-rich disk globular clusters. It is also the template used for
studying the giant branches of nearby resolved galaxies. In addition,
the age sensitive magnitude spread between the main sequence turnoff
and horizontal branch is identical for 47 Tuc, two bulge globular
clusters and the bulge field population. A precise relative age
constraint for 47 Tuc, compared to the halo clusters M4 and NGC 6397,
both of which we recently dated via white dwarf cooling, would
therefore constrain when the bulge formed relative to the old halo
globular clusters. Of particular interest is that with the higher
quality ACS data on NGC 6397, we are now capable with the technique of
white dwarf cooling of determining ages to an accuracy of +/-0.4 Gyrs
at the 95% confidence level. Ages derived from the cluster turnoff are
not currently capable of reaching this precision. The important role
that 47 Tuc plays in galaxy formation studies, and as the metal-rich
template for the globular clusters, makes the case for a white dwarf
cooling age for this metal-rich cluster compelling.

Several recent analyses have suggested that 47 Tuc is more than 2 Gyrs
younger than the Galactic halo. Others have suggested an age similar
to that of the most metal poor globular clusters. The current
situation is clearly uncertain and obviously a new approach to age
dating this important cluster is required.

With the observations of 47 Tuc, this project will complete a legacy
for HST. It will be the third globular cluster observed for white
dwarf cooling; the three covering almost the full metallicity range of
the cluster system. Unless JWST has its proposed bluer filters (700
and 900 nm) this science will not be possible perhaps for decades
until a large optical telescope is again in space. Ages for globular
clusters from the main sequence turnoff are less precise than those
from white dwarf cooling making the science with the current proposal
truly urgent.

WFC3/IR 11671

Kinematic Reconstruction of the Origin and IMF of the Massive Young
Clusters at the Galactic Center

We propose to exploit the wide field capabilities of Wide Field Camera
3 to study star formation at the Galactic center. By studying young
stars located in the most physically extreme region of our Galaxy, we
can test star formation theories, which suggest that such environments
should favor high mass stars and, in extreme cases, should suppress
star formation entirely. Specifically, we will measure the proper
motions and photometry of stars over the full extent of the three
massive young clusters that have been identified at the Galactic
Center (Arches, Quintuplet, and the Young Nuclear Star Cluster). These
observations are a factor of ?2000 more efficient than what can be
done with ground-based adaptive optics. Our goals are two-fold. First,
we hope to establish the initial sites of star formation in order to
obtain an accurate estimate of the conditions that led to the stellar
populations within these clusters. Answering this question for the
Young Nuclear Star Cluster is particularly important as it establishes
whether or not star formation can indeed proceed within 0.1 pc of our
Galaxy's supermassive black hole. Second, we will measure the IMF in
the Arches and Quintuplet, where dynamical evolution is less severe,
using proper motions to determine membership and to reveal the tidal
radius. Probing how the properties of the emergent stellar populations
within our Galaxy may be affected by the physical environment in which
they arise is an important first step to understanding how they might
vary as a function of cosmic time and thereby affect our models of
galaxy formation and evolution.

ACS/WFC3 11670

The Host Environments of Type Ia Supernovae in the SDSS Survey

The Sloan Digital Sky Survey Supernova Survey has discovered nearly
500 type Ia supernovae and created a large, unique, and uniform sample
of these cosmological tools. As part of a comprehensive study of the
supernova hosts, we propose to obtain Hubble ACS images of a large
fraction of these galaxies. Integrated colors and spectra will be
measured from the ground, but we require high-resolution HST imaging
to provide accurate morphologies and color information at the site of
the explosion. This information is essential in determining the
systematic effects of population age on type Ia supernova luminosities
and improving their reliability in measuring dark energy. Recent
studies suggest two populations of type Ia supernovae: a class that
explodes promptly after star-formation and one that is delayed by
billions of years. Measuring the star-formation rate at the site of
the supernova from colors in the HST images may be the best way to
differentiate between these classes.

WFC3/UVIS/IR 11644

A Dynamical-Compositional Survey of the Kuiper Belt: A New Window Into
the Formation of the Outer Solar System

The eight planets overwhelmingly dominate the solar system by mass,
but their small numbers, coupled with their stochastic pasts, make it
impossible to construct a unique formation history from the dynamical
or compositional characteristics of them alone. In contrast, the huge
numbers of small bodies scattered throughout and even beyond the
planets, while insignificant by mass, provide an almost unlimited
number of probes of the statistical conditions, history, and
interactions in the solar system. To date, attempts to understand the
formation and evolution of the Kuiper Belt have largely been dynamical
simulations where a hypothesized starting condition is evolved under
the gravitational influence of the early giant planets and an attempt
is made to reproduce the current observed populations. With little
compositional information known for the real Kuiper Belt, the test
particles in the simulation are free to have any formation location
and history as long as they end at the correct point. Allowing
compositional information to guide and constrain the formation,
thermal, and collisional histories of these objects would add an
entire new dimension to our understanding of the evolution of the
outer solar system. While ground based compositional studies have hit
their flux limits already with only a few objects sampled, we propose
to exploit the new capabilities of WFC3 to perform the first ever
large-scale dynamical-compositional study of Kuiper Belt Objects
(KBOs) and their progeny to study the chemical, dynamical, and
collisional history of the region of the giant planets. The
sensitivity of the WFC3 observations will allow us to go up to two
magnitudes deeper than our ground based studies, allowing us the
capability of optimally selecting a target list for a large survey
rather than simply taking the few objects that can be measured, as we
have had to do to date. We have carefully constructed a sample of 120
objects which provides both overall breadth, for a general
understanding of these objects, plus a large enough number of objects
in the individual dynamical subclass to allow detailed comparison
between and within these groups. These objects will likely define the
core Kuiper Belt compositional sample for years to come. While we have
many specific results anticipated to come from this survey, as with
any project where the field is rich, our current knowledge level is
low, and a new instrument suddenly appears which can exploit vastly
larger segments of the population, the potential for discovery -- both
anticipated and not -- is extraordinary.

WFC3/IR 11631

Binary Brown Dwarfs and the L/T Transition

Brown dwarfs traverse spectral types M, L and T as their atmospheric
structure evolves and they cool into oblivion. This SNAPSHOT program
will obtain WFC3-IR images of 45 nearby late-L and early-T dwarfs to
investigate the nature of the L/T transition. Recent analyses have
suggested that a substantial proportion of late-L and early-T dwarfs
are binaries, comprised of an L dwarf primary and T dwarf secondary.
WFC3-IR observations will let us quantify this suggestion by expanding
coverage to a much larger sample, and permitting comparison of the L/T
binary fraction against ?normal? ultracool dwarfs. Only eight L/T
binaries are currently known, including several that are poorly
resolved: we anticipate at least doubling the number of resolved
systems. The photometric characteristics of additional resolved
systems will be crucial to constraining theoretical models of these
late-type ultracool dwarfs. Finally, our data will also be eminently
suited to searching for extremely low luminosity companions,
potentially even reaching the Y dwarf regime.

ACS/WFC3 11604

The Nuclear Structure of OH Megamaser Galaxies

We propose a snapshot survey of a complete sample of 80 OH megamaser
galaxies. Each galaxy will be imaged with the ACS/WFC through F814W
and a linear ramp filter (FR656N or FR716N or FR782N or FR853N)
allowing us to study both the spheroid and the gas morphology in
Halpha + [N II]. We will use the 9% ramps FR647M (5370-7570 angstroms)
centered at 7000 angstroms and FR914M (7570-10, 719 angstroms) 8000
angstroms for continuum subtraction for the high and low z objects
respectively. OH megamaser galaxies (OHMG) form an important class of
ultraluminous IR-galaxies (ULIRGs) whose maser lines emit QSO-like
luminosities. ULIRGs in general are associated with recent mergers but
it is often unclear whether their power output is dominated by
starbursts or a hidden QSO because of the high absorbing columns which
hide their nuclei even at X-ray wavelengths. In contrast, OHMG exhibit
strong evidence for the presence of an energetically important and
recently triggered active nucleus. In particular it is clear that much
of the gas must have already collapsed to form a nuclear disk which
may be the progenitor of a circum-nuclear torus, a key element of the
unified scheme of AGN. A great advantage of studying OHMG systems over
the general ULIRG population, is that the circum-nuclear disks are
effectively "fixed" at an inner, edge on, orientation, eliminating
varying inclination as a nuisance parameter. We will use the HST
observations in conjunction with existing maser and spectroscopic data
to construct a detailed picture of the circum-nuclear regions of a
hitherto relatively neglected class of galaxy that may hold the key to
understanding the relationship between galaxy mergers, nuclear
star-formation, and the growth of massive black holes and the
triggering of nuclear activity.

WFC3/ACS/IR 11597

Spectroscopy of IR-Selected Galaxy Clusters at 1 z 1.5

We propose to obtain WFC3 G141 and G102 slitless spectroscopy of
galaxy clusters at 1 z 1.5 that were selected from the IRAC survey
of the Bootes NDWFS field. Our IRAC survey contains the largest sample
of spectroscopically confirmed clusters at z 1. The WFC3 grism data
will measure H-alpha to determine SFR, and fit models to the low
resolution continua to determine stellar population histories for the
brighter cluster members, and redshifts for the red galaxies too faint
for ground-based optical spectroscopy.

STIS/CCD 11572

Characterizing Atmospheric Sodium in the Transiting Hot-Jupiter
HD189733b

We propose STIS transit observations of the exoplanet HD189733b with
the goal of measuring atmospheric atomic sodium. Our strategy is to
repeat the observing methods used for HD209458b, which resulted in a
successful exoplanetary atmospheric sodium detection. Initial
ground-based measurements suggest that the sodium signature on
HD189733 could be up to three times larger than HD209458b, making a
robust 8 detection possible within a 12 orbit program observing three
transits. Transit transmission spectra resulting from space-based
measurements have the advantage of retaining absolute transit depths
when features are measured, which will make it possible to provide an
observational link between sodium and atmospheric haze detected with
ACS. Such a link can break modeling degeneracies and providing
stringent constraints on the overall atmospheric properties, making
such atmospheric information as abundances and the
temperature-pressure-altitude relation known. A successful measurement
will also allow for comparative atmospheric exoplanetology, as an
atmospheric feature will be measured with the same instrument in two
separate planets.

WFC3/ACS/IR 11563

Galaxies at z~7-10 in the Reionization Epoch: Luminosity Functions to
0.2L* from Deep IR Imaging of the HUDF and HUDF05 Fields

The first generations of galaxies were assembled around redshifts
z~7-10+, just 500-800 Myr after recombination, in the heart of the
reionization of the universe. We know very little about galaxies in
this period. Despite great effort with HST and other telescopes, less
than ~15 galaxies have been reliably detected so far at z7,
contrasting with the ~1000 galaxies detected to date at z~6, just
200-400 Myr later, near the end of the reionization epoch. WFC3 IR can
dramatically change this situation, enabling derivation of the galaxy
luminosity function and its shape at z~7-8 to well below L*,
measurement of the UV luminosity density at z~7-8 and z~8-9, and
estimates of the contribution of galaxies to reionization at these
epochs, as well as characterization of their properties (sizes,
structure, colors). A quantitative leap in our understanding of early
galaxies, and the timescales of their buildup, requires a total sample
of ~100 galaxies at z~7-8 to ~29 AB mag. We can achieve this with 192
WFC3 IR orbits on three disjoint fields (minimizing cosmic variance):
the HUDF and the two nearby deep fields of the HUDF05. Our program
uses three WFC3 IR filters, and leverages over 600 orbits of existing
ACS data, to identify, with low contamination, a large sample of over
100 objects at z~7-8, a very useful sample of ~23 at z~8-9, and limits
at z~10. By careful placement of the WFC3 IR and parallel ACS
pointings, we also enhance the optical ACS imaging on the HUDF and a
HUDF05 field. We stress (1) the need to go deep, which is paramount to
define L*, the shape, and the slope alpha of the luminosity function
(LF) at these high redshifts; and (2) the far superior performance of
our strategy, compared with the use of strong lensing clusters, in
detecting significant samples of faint z~7-8 galaxies to derive their
luminosity function and UV ionizing flux. Our recent z~7.4 NICMOS
results show that wide-area IR surveys, even of GOODS-like depth,
simply do not reach faint enough at z~7-9 to meet the LF and UV flux
objectives. In the spirit of the HDF and the HUDF, we will waive any
proprietary period, and will also deliver the reduced data to STScI.
The proposed data will provide a Legacy resource of great value for a
wide range of archival science investigations of galaxies at redshifts
z~2-9. The data are likely to remain the deepest IR/optical images
until JWST is launched, and will provide sources for spectroscopic
follow up by JWST, ALMA and EVLA.

WFC3/UVI/IR 11557

The Nature of Low-Ionization BAL QSOs

The rare subclass of optically-selected QSOs known as low-ionization
broad absorption line (LoBAL) QSOs show signs of high-velocity gas
outflows and reddened continua indicative of dust obscuration. Recent
studies show that galaxies hosting LoBAL QSOs tend to be ultraluminous
infrared systems that are undergoing mergers, and that have dominant
young ( 100 Myr) stellar populations. Such studies support the idea
that LoBAL QSOs represent a short- lived phase early in the life of
QSOs, when powerful AGN-driven winds are blowing away the dust and gas
surrounding the QSO. If so, understanding LoBALs would be critical in
the study of phenomena regulating black hole and galaxy evolution,
such as AGN feedback and the early stages of nuclear accretion. These
results, however, come from very small samples that may have serious
selection biases. We are therefore taking a more aggressive approach
by conducting a systematic multiwavelength study of a volume limited
sample of LoBAL QSOs at 0.5 z 0.6 drawn from SDSS. We propose to
image their host galaxies in two bands using WFC3/UVIS and WFC3/IR to
study the morphologies for signs of recent tidal interactions and to
map their interaction and star forming histories. We will thus
determine whether LoBAL QSOs are truly exclusively found in young
merging systems that are likely to be in the early stages of nuclear
accretion.

WFC3/UV 11556

Investigations of the Pluto System

We propose a set of high SNR observations of the Pluto system that
will provide improved lightcurves, orbits, and photometric properties
of Nix and Hydra. The key photometric result for Nix and Hydra will be
a vastly improved lightcurve shape and rotation period to test if the
objects are in synchronous rotation or not. A second goal of this
program will be to retrieve a new epoch of albedo map for the surface
of Pluto. These observations will also improve masses and in some case
densities for the bodies in the Pluto system.

COS/NUV/FUV 11522

COS-GTO: Star Formation/Lyman-Alpha

A sample of 20 star-forming galaxies will be observed with COS G130M.
The galaxies were selected from the Kitt Peak International
Spectroscopic Survey (KISSR) data release and cover a broad range of
luminosity, oxygen abundance, and reddening. The goal of the program
is to characterize the Lyman-alpha properties and establish
correlations with fundamental galaxy properties. Each galaxy will be
observed for one orbit.

NIC3/WFC3/IR 11149

Characterizing the Stellar Populations in Lyman-Alpha Emitters and
Lyman Break Galaxies at 5.7z7 in the Subaru Deep Field

The epoch of reionization marks a major phase transition of the
Universe, during which the intergalactic space became transparent to
UV photons. Determining when this occurred and the physical processes
involved represents the latest frontier in observational cosmology.
Over the last few years, searches have intensified to identify the
population of high-redshift (z6) galaxies that might be responsible
for this process, but the progress is hampered partly by the
difficulty of obtaining physical information (stellar mass, age, star
formation rate/history) for individual sources. This is because the
number of z6 galaxies that have both secure spectroscopic redshifts
and high-quality infrared photometry (especially with Spitzer/IRAC) is
still fairly small. Considering that only several photometric points
are available per source, and that many model SEDs are highly
degenerate, it is crucial to obtain as many observational constraints
as possible for each source to ensure the validity of SED modeling. To
better understand the physical properties of high-redshift galaxies,
we propose here to conduct HST/NICMOS (72 orbits) and Spitzer/IRAC
(102 hours) imaging of spectroscopically confirmed, bright (z26 mag
(AB)) Ly-alpha emitters (LAEs) and Lyman-break galaxies (LBGs) at
5.7z7 selected from the Subaru Deep Field. Spectroscopic redshifts
remove one critical free parameter from SED modeling while bright
source magnitudes ensure high-quality photometric data. By making
accurate determinations of stellar masses, ages, and star-formation
histories, we will specifically address the following major questions:
(1) Do LAEs and LBGs represent physically different galaxy populations
at z6 as suggested recently? (2) Is Ly-alpha emission systematically
suppressed at z6 with respect to continuum emission? (i.e., are we
reaching the epoch of incomplete reionization?), and (3) Do we see any
sign of abnormally young stellar population in any of the z6
galaxies?

 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Daily Report #5122 Cooper, Joe Hubble 0 June 22nd 10 03:55 PM
Daily Report Cooper, Joe Hubble 0 December 22nd 08 06:17 PM
Daily Report #4513 Cooper, Joe Hubble 0 December 26th 07 04:33 PM
Daily Report [email protected] Hubble 0 October 29th 04 04:59 PM
HST Daily Report 131 George Barbehenn Hubble 0 May 11th 04 02:48 PM


All times are GMT +1. The time now is 04:51 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 SpaceBanter.com.
The comments are property of their posters.