![]() |
#1
|
|||
|
|||
![]()
HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science
DAILY REPORT****** # 4565 PERIOD COVERED: UT March 11, 2008 (DOY 071) OBSERVATIONS SCHEDULED FGS 11212 Filling the Period Gap for Massive Binaries The current census of binaries among the massive O-type stars is seriously incomplete for systems in the period range from years to millennia because the radial velocity variations are too small and the angular separations too close for easy detection. Here we propose to discover binaries in this observational gap through a Faint Guidance Sensor SNAP survey of relatively bright targets listed in the Galactic O Star Catalog. Our primary goal is to determine the binary frequency among those in the cluster/association, field, and runaway groups. The results will help us assess the role of binaries in massive star formation and in the processes that lead to the ejection of massive stars from their natal clusters. The program will also lead to the identification of new, close binaries that will be targets of long term spectroscopic and high angular resolution observations to determine their masses and distances. The results will also be important for the interpretation of the spectra of suspected and newly identified binary and multiple systems. NIC1/NIC2/NIC3 8795 NICMOS Post-SAA calibration - CR Persistence Part 6 A new procedure proposed to alleviate the CR-persistence problem of NICMOS. Dark frames will be obtained immediately upon exiting the SAA contour 23, and every time a NICMOS exposure is scheduled within 50 minutes of coming out of the SAA. The darks will be obtained in parallel in all three NICMOS Cameras. The POST-SAA darks will be non-standard reference files available to users with a USEAFTER date/time mark. The keyword 'USEAFTER=date/time' will also be added to the header of each POST-SAA DARK frame. The keyword must be populated with the time, in addition to the date, because HST crosses the SAA ~8 times per day so each POST-SAA DARK will need to have the appropriate time specified, for users to identify the ones they need. Both the raw and processed images will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS science/calibration observations started within 50 minutes of leaving an SAA will need such maps to remove the CR persistence from the science images. Each observation will need its own CRMAP, as different SAA passages leave different imprints on the NICMOS detectors. NIC2 11142 Revealing the Physical Nature of Infrared Luminous Galaxies at 0.3 We aim to determine physical properties of IR luminous galaxies at 0.3z2.7 by requesting coordinated HST/NIC2 and MIPS 70um observations of a unique, 24um flux-limited sample with complete Spitzer mid-IR spectroscopy. The 150 sources investigated in this program have S{24um} 0.8mJy and their mid-IR spectra have already provided the majority targets with spectroscopic redshifts {0.3z2.7}. The proposed 150~orbits of NIC2 and 66~hours of MIPS 70um will provide the physical measurements of the light distribution at the rest-frame ~8000A and better estimates of the bolometric luminosity. Combining these parameters together with the rich suite of spectral diagnostics from the mid-IR spectra, we will {1} measure how common mergers are among LIRGs and ULIRGs at 0.3z2.7, and establish if major mergers are the drivers of z1 ULIRGs, as in the local Universe. {2} study the co-evolution of star formation and blackhole accretion by investigating the relations between the fraction of starburst/AGN measured from mid-IR spectra vs. HST morphologies, L{bol} and z. {3} obtain the current best estimates of the far-IR emission, thus L{bol} for this sample, and establish if the relative contribution of mid-to-far IR dust emission is correlated with morphology {resolved vs. unresolved}. NIC3 11082 NICMOS Imaging of GOODS: Probing the Evolution of the Earliest Massive Galaxies, Galaxies Beyond Reionization, and the High Redshift Obscured Universe (uses ACS/SBC and WFPC2) Deep near-infrared imaging provides the only avenue towards understanding a host of astrophysical problems, including: finding galaxies and AGN at z 7, the evolution of the most massive galaxies, the triggering of star formation in dusty galaxies, and revealing properties of obscured AGN. As such, we propose to observe 60 selected areas of the GOODS North and South fields with NICMOS Camera 3 in the F160W band pointed at known massive M 10^11 M_0 galaxies at z 2 discovered through deep Spitzer imaging. The depth we will reach {26.5 AB at 5 sigma} in H_160 allows us to study the internal properties of these galaxies, including their sizes and morphologies, and to understand how scaling relations such as the Kormendy relationship evolved. Although NIC3 is out of focus and undersampled, it is currently our best opportunity to study these galaxies, while also sampling enough area to perform a general NIR survey 1/3 the size of an ACS GOODS field. These data will be a significant resource, invaluable for many other science goals, including discovering high redshift galaxies at z 7, the evolution of galaxies onto the Hubble sequence, as well as examining obscured AGN and dusty star formation at z 1.5. The GOODS fields are the natural location for HST to perform a deep NICMOS imaging program, as extensive data from space and ground based observatories such as Chandra, GALEX, Spitzer, NOAO, Keck, Subaru, VLT, JCMT, and the VLA are currently available for these regions. Deep high-resolution near-infrared observations are the one missing ingredient to this survey, filling in an important gap to create the deepest, largest, and most uniform data set for studying the faint and distant universe. The importance of these images will increase with time as new facilities come on line, most notably WFC3 and ALMA, and for the planning of future JWST observations. NIC3 11120 A Paschen-Alpha Study of Massive Stars and the ISM in the Galactic Center The Galactic center (GC) is a unique site for a detailed study of a multitude of complex astrophysical phenomena, which may be common to nuclear regions of many galaxies. Observable at resolutions unapproachable in other galaxies, the GC provides an unparalleled opportunity to improve our understanding of the interrelationships of massive stars, young stellar clusters, warm and hot ionized gases, molecular clouds, large scale magnetic fields, and black holes. We propose the first large-scale hydrogen Paschen alpha line survey of the GC using NICMOS on the Hubble Space Telescope. This survey will lead to a high resolution and high sensitivity map of the Paschen alpha line emission in addition to a map of foreground extinction, made by comparing Paschen alpha to radio emission. This survey of the inner 75 pc of the Galaxy will provide an unprecedented and complete search for sites of massive star formation. In particular, we will be able to (1) uncover the distribution of young massive stars in this region, (2) locate the surfaces of adjacent molecular clouds, (3) determine important physical parameters of the ionized gas, (4) identify compact and ultra-compact HII regions throughout the GC. When combined with existing Chandra and Spitzer surveys as well as a wealth of other multi-wavelength observations, the results will allow us to address such questions as where and how massive stars form, how stellar clusters are disrupted, how massive stars shape and heat the surrounding medium, and how various phases of this medium are interspersed. WFPC2 11030 WFPC2 WF4 Temperature Reduction #3 In the fall of 2005, a serious anomaly was found in images from the WF4 CCD in WFPC2. The WF4 CCD bias level appeared to have become unstable, resulting in sporadic images with either low or zero bias level. The severity and frequency of the problem was rapidly increasing, making it possible that WF4 would soon become unusable if no work-around were found. Examination of bias levels during periods with frequent WFPC2 images showed low and zero bias episodes every 4 to 6 hours. This periodicity is driven by cycling of the WFPC2 Replacement Heater, with the bias anomalies occurring at the temperature peaks. The other three CCDs {PC1, WF2, and WF3} appear to be unaffected and continue to operate properly. Lowering the Replacement Heater temperature set points by a few degrees C effectively eliminates the WF4 anomaly. On 9 January 2006, the upper set point of the WFPC2 Replacement Heater was reduced from 14.9C to 12.2C. On 20 February 2006, the upper set point was reduced from 12.2C to 11.3C, and the lower set point was reduced from 10.9C to 10.0C. These changes restored the WF4 CCD bias level; however, the bias level has begun to trend downwards again, mimicking its behavior in late 2004 and early 2005. A third temperature reduction is planned for March 2007. We will reduce the upper set point of the heater from 11.3C to 10.4C and the lower set point from 10.0C to 9.1C. The observations described in this proposal will test the performance of WFPC2 before and after this temperature reduction. Additional temperature reductions may be needed in the future, depending on the performance of WF4. Orbits: internal 26, external 1. WFPC2 11083 The Structure, Formation and Evolution of Galactic Cores and Nuclei A surprising result has emerged from the ACS Virgo Cluster Survey {ACSVCS}, a program to obtain ACS/WFC gz imaging for a large, unbiased sample of 100 early-type galaxies in the Virgo Cluster. On subarcsecond scales {i.e., 0.1"-1"}, the HST brightness profiles vary systematically from the brightest giants {which have nearly constant surface brightness cores} to the faintest dwarfs {which have compact stellar nuclei}. Remarkably, the fraction of galaxy mass contributed by the nuclei in the faint galaxies is identical to that contributed by supermassive black holes in the bright galaxies {0.2%}. These findings strongly suggest that a single mechanism is responsible for both types of Central Massive Object: most likely internally or externally modulated gas inflows that feed central black holes or lead to the formation of "nuclear star clusters". Understanding the history of gas accretion, star formation and chemical enrichment on subarcsecond scales has thus emerged as the single most pressing question in the study of nearby galactic nuclei, either active or quiescent. We propose an ambitious HST program {199 orbits} that constitutes the next, obvious step forward: high-resolution, ultraviolet {WFPC2/F255W} and infrared {NIC1/F160W} imaging for the complete ACSVCS sample. By capitalizing on HST's unique ability to provide high-resolution images with a sharp and stable PSF at UV and IR wavelengths, we will leverage the existing optical HST data to obtain the most complete picture currently possible for the history of star formation and chemical enrichment on these small scales. Equally important, this program will lead to a significant improvement in the measured structural parameters and density distributions for the stellar nuclei and the underlying galaxies, and provide a sensitive measure of "frosting" by young stars in the galaxy cores. By virtue of its superb image quality and stable PSF, NICMOS is the sole instrument capable of the IR observations proposed here. In the case of the WFPC2 observations, high-resolution UV imaging { 0.1"} is a capability unique to HST, yet one that could be lost at any time. WFPC2 11202 The Structure of Early-type Galaxies: 0.1-100 Effective Radii The structure, formation and evolution of early-type galaxies is still largely an open problem in cosmology: how does the Universe evolve from large linear scales dominated by dark matter to the highly non-linear scales of galaxies, where baryons and dark matter both play important, interacting, roles? To understand the complex physical processes involved in their formation scenario, and why they have the tight scaling relations that we observe today {e.g. the Fundamental Plane}, it is critically important not only to understand their stellar structure, but also their dark-matter distribution from the smallest to the largest scales. Over the last three years the SLACS collaboration has developed a toolbox to tackle these issues in a unique and encompassing way by combining new non-parametric strong lensing techniques, stellar dynamics, and most recently weak gravitational lensing, with high-quality Hubble Space Telescope imaging and VLT/Keck spectroscopic data of early-type lens systems. This allows us to break degeneracies that are inherent to each of these techniques separately and probe the mass structure of early-type galaxies from 0.1 to 100 effective radii. The large dynamic range to which lensing is sensitive allows us both to probe the clumpy substructure of these galaxies, as well as their low-density outer haloes. These methods have convincingly been demonstrated, by our team, using smaller pilot-samples of SLACS lens systems with HST data. In this proposal, we request observing time with WFPC2 and NICMOS to observe 53 strong lens systems from SLACS, to obtain complete multi-color imaging for each system. This would bring the total number of SLACS lens systems to 87 with completed HST imaging and effectively doubles the known number of galaxy-scale strong lenses. The deep HST images enable us to fully exploit our new techniques, beat down low-number statistics, and probe the structure and evolution of early-type galaxies, not only with a uniform data-set an order of magnitude larger than what is available now, but also with a fully coherent and self-consistent methodological approach! FLIGHT OPERATIONS SUMMARY: Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.) HSTARS: 11220 - REacq(2,3,2) results in fine lock backup (2,0,2) using FGS 2 At acquisition of signal 072/00:48:45, the REacq(2,3,2) scheduled at 072/00:17:17 - 00:25:22 had resulted in fine lock backup (2,0,2) using FGS 2 due to (QF3STOPF) stop flag indication on FGS-3. Pre-acquisition OBADs attitude correction (RSS) values are not available due to LOS. Post-acquisition OBAD/MAP had (RSS) value of 15.74 arcseconds. COMPLETED OPS REQUEST: 17597-9 - FHST Stuck-on-Bottom Macro Execution COMPLETED OPS NOTES: (None) ************************ SCHEDULED***** SUCCESSFUL FGS GSacq*************** 08*************** 08 FGS REacq*************** 07*************** 07 OBAD with Maneuver ***** 30**************** 29 SIGNIFICANT EVENTS: (None) |
Thread Tools | |
Display Modes | |
|
|
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Daily Report # 4428 | Cooper, Joe | Hubble | 0 | August 17th 07 03:46 PM |
PING: Rick Johnson or anyone else... NGC 4565 | G | Astro Pictures | 0 | March 18th 07 07:06 AM |
Daily Report | [email protected] | Hubble | 0 | October 29th 04 04:59 PM |
HST Daily Report 131 | George Barbehenn | Hubble | 0 | May 11th 04 02:48 PM |