View Single Post
  #2  
Old October 31st 17, 08:24 AM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default Fudge Factors in Einstein's Special Relativity

Special relativity is a deductive theory so fudge factors are unjustified by definition - Einsteinians have to introduce them through the back door. In contrast, general relativity can be defined as fudge theory - all its predictions are the result of empirical groping, fudging and fitting:

Arthur Eddington: "The statement that in the relativity theory gravitational waves are propagated with the speed of light has, I believe, been based entirely upon the foregoing investigation; but it will be seen that it is only true in a very conventional sense. If coordinates are chosen so as to satisfy a certain condition which has no very clear geometrical importance, the speed is that of light; if the coordinates are slightly different the speed is altogether different from that of light. The result stands or falls by the choice of coordinates and, so far as can be judged, the coordinates here used were purposely introduced in order to obtain the simplification which results from representing the propagation as occurring with the speed of light. The argument thus follows a vicious circle." The Mathematical Theory of Relativity, pp. 130-131 https://www.amazon.com/Mathematical-.../dp/0521091659

That is, there is no PHYSICAL reason why the gravitational waves "discovered" by LIGO should travel at the speed of light; LIGO conspirators just faked the signals, knowing that Einstein's general relativity is a fudge-factor business able to predict anything.

Below Einstein defines two types of theory - empirical and deductive - and it is unquestionable that the predictions of a deductive theory do matter. The problem is: Do the predictions of an EMPIRICAL theory matter in physics? If not, the implication is that Einstein's general relativity, as an empirical theory, makes no important predictions.

Albert Einstein: "From a systematic theoretical point of view, we may imagine the process of evolution of an empirical science to be a continuous process of induction. Theories are evolved and are expressed in short compass as statements of a large number of individual observations in the form of empirical laws, from which the general laws can be ascertained by comparison. Regarded in this way, the development of a science bears some resemblance to the compilation of a classified catalogue. It is, as it were, a purely empirical enterprise. But this point of view by no means embraces the whole of the actual process ; for it slurs over the important part played by intuition and deductive thought in the development of an exact science. As soon as a science has emerged from its initial stages, theoretical advances are no longer achieved merely by a process of arrangement. Guided by empirical data, the investigator rather develops a system of thought which, in general, is built up logically from a small number of fundamental assumptions, the so-called axioms." https://www.marxists.org/reference/a...ative/ap03.htm

Sabine Hossenfelder describes a deplorable situation in fundamental physics:

Sabine Hossenfelder: "Is The Inflationary Universe A Scientific Theory? Not Anymore. It is this abundance of useless models that gives rise to the criticism that inflation is not a scientific theory. And on that account, the criticism is justified. It's not good scientific practice. It is a practice that, to say it bluntly, has become commonplace because it results in papers, not because it advances science." https://www.forbes.com/sites/startsw...y-not-anymore/

Sabine Hossenfelder (Bee): "The criticism you raise that there are lots of speculative models that have no known relevance for the description of nature has very little to do with string theory but is a general disease of the research area. Lots of theorists produce lots of models that have no chance of ever being tested or ruled out because that's how they earn a living. The smaller the probability of the model being ruled out in their lifetime, the better. It's basic economics. Survival of the 'fittest' resulting in the natural selection of invincible models that can forever be amended." http://www.math.columbia.edu/~woit/wordpress/?p=9375

What is going on? Is this a human nature's problem - e.g. bad people of today do things that good people of the past didn't? Of course not. Rather, the scientific method was changed long ago and theoretical physics has not been science since then. The transition was from deductivism to empiricism, or from "deducing the equation" to "guessing the equation":

Richard Feynman (50:07): "Dirac discovered the correct laws for relativity quantum mechanics simply by guessing the equation. The method of guessing the equation seems to be a pretty effective way of guessing new laws." https://www.youtube.com/watch?v=kd0xTfdt6qw&t=2368s

Actually the anti-deductive movement started with Einstein's general relativity (special relativity was deductive). Einstein and his mathematical friends spent a few years tirelessly "guessing the equation" until "excellent agreement with observation" was reached:

Michel Janssen: "But - as we know from a letter to his friend Conrad Habicht of December 24, 1907 - one of the goals that Einstein set himself early on, was to use his new theory of gravity, whatever it might turn out to be, to explain the discrepancy between the observed motion of the perihelion of the planet Mercury and the motion predicted on the basis of Newtonian gravitational theory. [...] The Einstein-Grossmann theory - also known as the "Entwurf" ("outline") theory after the title of Einstein and Grossmann's paper - is, in fact, already very close to the version of general relativity published in November 1915 and constitutes an enormous advance over Einstein's first attempt at a generalized theory of relativity and theory of gravitation published in 1912. The crucial breakthrough had been that Einstein had recognized that the gravitational field - or, as we would now say, the inertio-gravitational field - should not be described by a variable speed of light as he had attempted in 1912, but by the so-called metric tensor field.. The metric tensor is a mathematical object of 16 components, 10 of which independent, that characterizes the geometry of space and time. In this way, gravity is no longer a force in space and time, but part of the fabric of space and time itself: gravity is part of the inertio-gravitational field. Einstein had turned to Grossmann for help with the difficult and unfamiliar mathematics needed to formulate a theory along these lines. [...] Einstein did not give up the Einstein-Grossmann theory once he had established that it could not fully explain the Mercury anomaly. He continued to work on the theory and never even mentioned the disappointing result of his work with Besso in print. So Einstein did not do what the influential philosopher Sir Karl Popper claimed all good scientists do: once they have found an empirical refutation of their theory, they abandon that theory and go back to the drawing board. [...] On November 4, 1915, he presented a paper to the Berlin Academy officially retracting the Einstein-Grossmann equations and replacing them with new ones. On November 11, a short addendum to this paper followed, once again changing his field equations. A week later, on November 18, Einstein presented the paper containing his celebrated explanation of the perihelion motion of Mercury on the basis of this new theory. Another week later he changed the field equations once more. These are the equations still used today. This last change did not affect the result for the perihelion of Mercury. Besso is not acknowledged in Einstein's paper on the perihelion problem. Apparently, Besso's help with this technical problem had not been as valuable to Einstein as his role as sounding board that had earned Besso the famous acknowledgment in the special relativity paper of 1905. Still, an acknowledgment would have been appropriate. After all, what Einstein had done that week in November, was simply to redo the calculation he had done with Besso in June 1913, using his new field equations instead of the Einstein-Grossmann equations. It is not hard to imagine Einstein's excitement when he inserted the numbers for Mercury into the new expression he found and the result was 43", in excellent agreement with observation." https://netfiles.umn.edu/users/janss...0page/EBms.pdf

"Guessing the equation" is naturally followed by "guessing the fudge factor". In the video below, at 0:57, a fudge factor is added to an equation in an empirical model (Einstein's general relativity), then at 2:16 the fudge factor is removed:

https://www.sciencechannel.com/tv-sh...iggest-blunder
SPACE'S DEEPEST SECRETS Einstein's "Biggest Blunder"

"A fudge factor is an ad hoc quantity introduced into a calculation, formula or model in order to make it fit observations or expectations. Examples include Einstein's Cosmological Constant..." https://en.wikipedia.org/wiki/Fudge_factor

Can one add a fudge factor analogous to the cosmological constant to the Lorentz transformation equations? One cannot, and the reason is simple: Special relativity is deductive (even though a false postulate and an invalid argument spoiled it from the very beginning) and fudging is impossible by definition - one has no right to add anything that is not deducible from the postulates.

Nowadays, except for special relativity, theories and models in physics are empirical, non-deductive - they cannot be presented as a set of valid arguments built up logically from a small number of simple axioms (postulates). This makes them unfalsifiable a priori.

"By a theory I shall mean the deductive closure of a set of theoretical postulates together with an appropriate set of auxiliary hypotheses; that is, everything that can be deduced from this set." W. H. Newton-Smith, THE RATIONALITY OF SCIENCE, p. 199 http://cdn.preterhuman.net/texts/tho...%20science.pdf

Only deductive theories (models) can be falsified, either logically or experimentally. That is:

1. Arguments can be checked for validity.

2. The reductio-ad-absurdum procedure can be applied.

3. Showing, experimentally, that a postulate or a deduced consequence is false makes sense - the deductive structure allows one to interpret the falsehood in terms of the whole theory. (In the absence of a deductive structure any detected falsehood or absurdity remains insignificant - one can ignore it or "fix" it in some way, e.g. by introducing a fudge factor.)

The only alternative to deductivism is empiricism - models are essentially equivalent to the "empirical models" defined he

"The objective of curve fitting is to theoretically describe experimental data with a model (function or equation) and to find the parameters associated with this model. Models of primary importance to us are mechanistic models. Mechanistic models are specifically formulated to provide insight into a chemical, biological, or physical process that is thought to govern the phenomenon under study. Parameters derived from mechanistic models are quantitative estimates of real system properties (rate constants, dissociation constants, catalytic velocities etc.). It is important to distinguish mechanistic models from empirical models that are mathematical functions formulated to fit a particular curve but whose parameters do not necessarily correspond to a biological, chemical or physical property." http://collum.chem.cornell.edu/docum...ve_Fitting.pdf

Pentcho Valev