View Single Post
  #1  
Old November 5th 10, 09:42 AM posted to rec.sport.cricket,sci.physics,sci.astro,sci.chem
NSA TORTURE TECHNOLOGY, NEWS and RESEARCH
external usenet poster
 
Posts: 11
Default Hologram messaging coming of age

http://www.bbc.co.uk/news/science-environment-11685582

4 November 2010 Last updated at 04:07 ET

Hologram messaging coming of age

By Jonathan Amos Science correspondent, BBC News

STREAMING HOLOGRAPHIC IMAGES IN NEAR-REALTIME
a.. Many different perspectives of the object or person (1) are captured on
a series of cameras arranged in an arc or circle
a.. That information is processed (2) and sent through a computer link. It
could conceivably be sent anywhere in the world
a.. The 3D holographic printing system (3) receives the information and
drives the laser that writes the images on to the screen
a.. The photosensitive polymer (4) will update every two seconds; a light is
needed to illuminate the changing holograms

It has long been a staple of science fiction films - the idea that you could
send a moving 3D representation of someone to any location, even on another
continent.

Now, US researchers claim this fantasy is very close to reality.

A University of Arizona team says it has devised a system that can make a
holographic display appear in another place and update it in near real-time.

The group tells the journal Nature that the development has huge potential.

"We foresee many applications, for example in manufacturing," said Professor
Nasser Peyghambarian from Arizona's College of Optical Sciences.

"Car manufacturers or airplane manufacturers could look at holograms and
design their systems in real time. They could look at 3D models and make
changes as they go.

"Imagine a very complicated surgical procedure - then with this system
surgeons around the world could participate. They could see the whole
procedure in real-time and in 3D, and help out," he told BBC News.

Quick draw

Ever since the Princess Leia character was magically projected in 3D during
the original Star Wars film, people have wondered if such a technology might
really be possible.

The system demonstrated this week is far from the finished product, but it
gives a very strong hint of what might be achievable with further
refinements.

At its heart is a new plastic screen material that will record 3D
holographic images time and time again, every two seconds.

In the set up described in Nature, 16 cameras recorded 2D images of objects
and people from multiple angles That information was then sent to another
location using a computer connection.

At the remote site, a laser was used to "print" the visual information on to
the new photosensitive polymer. The 3D image composed of the 16 perspectives
decays naturally, but the laser can write the next "frame" before it
completely disappears.

The team previously gave an update on its work in a 2008 Nature paper. Back
then, its 10cm-by-10cm, one-colour screen could only be updated every four
minutes.

The new 45cm-by-45cm, multi-colour screen is re-written in a hundredth of
the time.

No glasses are needed to see the images, merely some form of illumination.

And unlike "standard 3D" TV or films that produce a simple parallax effect
in which each eye is offered one slightly different perspective on the same
object, the scope of the holographic images is built from the many views of
numerous cameras.

Challenges ahead

Theoretically, say the researchers, it should be possible to project a full
360-degree hologram, one where an individual standing on one side of the
screen sees the front of a printed object while someone standing on the
other side of the screen sees its rear.

So while it is not quite Princess Leia being projected in free space, the
system could conceivably produce a very rounded telepresence.

The team concedes its prototype system has a lot of development ahead of it,
but the researchers believe the first commercial products could be available
in a few years' time.

One key advance needed is the ability to re-print the polymer at least 30
times a second. This would give a much more realistic sense of movement. The
screen itself needs to be made much bigger and additional cameras would have
to be incorporated to provide more detail and at significantly higher
resolutions.

And all this would have large processing and bandwidth implications which
would likely limit the system's use to high-end applications - certainly in
the early stages of commercialisation.

"Coming up with improvements to the polymer is going to take some time, and
also coming up with better lasers is going to take some time. In about two
to three years, we should be able to do those aspects," said Professor
Peyghambarian.

"And then transferring that into a product is going to take another three to
four years. But I don't believe there is any physics that would prevent us
from getting there."










.................................................. ...............
Posted via TITANnews - Uncensored Newsgroups Access
at
http://www.TitanNews.com
-=Every Newsgroup - Anonymous, UNCENSORED, BROADBAND Downloads=-

Ads