View Single Post
  #1  
Old May 30th 17, 05:55 AM posted to sci.physics.research,sci.astro.research
Phillip Helbig
external usenet poster
 
Posts: 38
Default entropy and gravitation

A smooth distribution corresponds to high entropy and a lumpy one to low
entropy if gravity is not involved. For example, air in a room has high
entropy, but all the oxygen in one part and all the nitrogen in another
part would correspond to low entropy.

If gravity is involved, however, things are reversed: a lumpy
distribution (e.g. everything in black holes) has a high entropy and a
smooth distribution (e.g. the early universe) has a low entropy.

Let's imagine the early universe---a smooth, low-entropy
distribution---and imagine gravity becoming weaker and weaker (by
changing the gravitational constant). Can we make G arbitrarily small
and the smooth distribution will still have low entropy? This seems
strange: an ARBITRARILY SMALL G makes a smooth distribution have a low
entropy. On the other hand, it seems strange that the entropy should
change at some value of G.