View Single Post
  #2  
Old January 4th 13, 07:10 AM posted to sci.physics.relativity,sci.physics,sci.math,sci.astro
Sylvia Else
external usenet poster
 
Posts: 1,063
Default Simplified Twin Paradox Resolution.

On 4/01/2013 5:03 PM, Koobee Wublee wrote:
On Jan 3, 5:52 pm, Sylvia Else wrote:

Instead, on Earth there is a clock and a camcorder with a very powerful
telescopic lens and a tranceiver There is also a spacecraft travelling
at velocity v towards Earth, similarly equipped. For simplicity, we
treat Earth + clock + camcorder + transceivers as a single point.
Similarly for the spacecraft.

After some time T in its own frame, the spacecraft encounters a most
similar spacecraft headed towards Earth at velocity v relative to Earth.
As they pass, the first spacecraft transmits its entire camcorder
recording to the second spacecraft, and the second spacecraft's clock is
set to the value shown by the first spacecraft's clock. The camcorder on
the second spacecraft then starts recording, continuing the recording it
just received.


Instead of v, let’s say (B = v / c) for simplicity. The earth is
Point #0, outbound spacecraft is Point #1, and inbound spacecraft is
Point #2.

According to the Lorentz transform, relative speeds a

** B_00^2 = 0, speed of #0 as observed by #0
** B_01^2 = B^2, speed of #1 as observed by #0
** B_02^2 = B^2, speed of #2 as observed by #0

** B_10^2 = B^2, speed of #0 as observed by #1
** B_11^2 = 0, speed of #1 as observed by #1
** B_12^2 = 4 B^2 / (1 – B^2), speed of #2 as observed by #1

** B_20^2 = B^2, speed of #0 as observed by #2
** B_21^2 = 4 B^2 / (1 – B^2), speed of #1 as observed by #2
** B_22^2 = 0, speed of #2 as observed by #2

When Point #0 is observed by all, the Minkowski spacetime (divided by
c^2) is:

** dt_00^2 (1 – B_00^2) = dt_10^2 (1 – B_10^2) = dt_20^2 (1 – B_20^2)

When Point #1 is observed by all, the Minkowski spacetime (divided by
c^2) is:

** dt_01^2 (1 – B_01^2) = dt_11^2 (1 – B_11^2) = dt_21^2 (1 – B_21^2)

When Point #2 is observed by all, the Minkowski spacetime (divided by
c^2) is:

** dt_02^2 (1 – B_02^2) = dt_12^2 (1 – B_12^2) = dt_22^2 (1 – B_22^2)

Where

** dt_00 = Local rate of time flow at Point #0
** dt_01 = Rate of time flow at #1 as observed by #0
** dt_02 = Rate of time flow at #2 as observed by #0

** dt_10 = Rate of time flow at #0 as observed by #1
** dt_11 = Local rate of time flow at Point #1
** dt_12 = Rate of time flow at #2 as observed by #1

** dt_20 = Rate of time flow at #0 as observed by #2
** dt_21 = Rate of time flow at #1 as observed by #2
** dt_22 = Local rate of time flow at Point #2

So, with all the pertinent variables identified, the contradiction of
the twins’ paradox is glaring right at anyone with a thinking brain.
shrug


Prove it. Show that you can properly derive an equation that is
manifestly false.

Sylvia.