View Single Post
  #2  
Old November 3rd 03, 03:05 PM
Paul B. Andersen
external usenet poster
 
Posts: n/a
Default CMBR? Not in the Big Bang Universe.


"Max Keon" skrev i melding
...
CMBR? Not in the Big Bang Universe.
-----

For some time I've been trying to understand why the spectral
energy density graph plot of the 2.73 K CMBR, per formula [1]
(2 * pi * f^3) / (c^2 * (exp(h * f / (k * T)) - 1)), is nothing
like a 2.73 K blackbody radiator plot according to formula [2]
(2 * pi * h * c^2) / (b^5 * ((exp((h * f) / (k * T))) - 1))
(b is wavelength)


And why is that?
I have shown you this before, it is quite simple:
dW/df = (2 *pi *h* f^3) / (c^2 * (exp(h * f / (k * T)) - 1)),
f = c/b, df/db = -c/b^2
dW/db = (dW/df)*(df/db)
dW/db = -(2*pi*h*c^2) / (b^5*((exp((h*c)/ k*T*b))) - 1))

The graph plot of intensity per frequency unit along a scale of
frequencies can be easily converted for direct comparison with
formula [2] by converting frequency to wavelength with (c / f) and
plotting the curve on the same graph scale as for formula [2].


No, you cannot.
If you insert f = c/b in [1], it is still dW/df, which is different
from dW/db.

Whatever shape the curves may follow, 5.35 cycles per cm is the peak
point along the emissive power curve for a 2.73 K radiator according
to formula [1], and that is found to be 1 / 5.35 = .187 cm
wavelength. But this is not so according to formula [2], which
gives the peak wavelength as .106 cm.


dW/db = -c/b^2* dW/df
so it is quite obvious that they don't peak at the same frequency/wavelength.

But I showed you this before, and I am sure you commented it,
so you did see it.

So why this nonsense again?

Paul