View Single Post
  #2  
Old October 2nd 15, 12:15 AM posted to sci.astro
Pentcho Valev
external usenet poster
 
Posts: 8,078
Default DEDUCTIVE GENERAL RELATIVITY

Newton's emission theory of light:

Postulate 1: If the top of a tower of height h emits light with frequency f (as measured by the emitter), an observer on the ground will measure the frequency to be f'=f(1+gh/c^2) (confirmed by the Pound-Rebka experiment).

Postulate 2: There is no gravitational time dilation.

Postulate 3: The wavelength remains unchanged as the light falls.

Conclusion validly following from the postulates: The acceleration of the falling light is g, like the acceleration of ordinary falling objects. The observer on the ground will measure the speed of the light to be c'=c(1+gh/c^2):

http://sethi.lamar.edu/bahrim-cristi...t-lens_PPT.pdf
Cristian Bahrim: "If we accept the principle of equivalence, we must also accept that light falls in a gravitational field with the same acceleration as material bodies."

http://www.wfu.edu/~brehme/space.htm
Robert W. Brehme: "Light falls in a gravitational field just as do material objects."

http://www.printsasia.com/book/relat...ann-0486406768
Banesh Hoffmann: "In an accelerated sky laboratory, and therefore also in the corresponding earth laboratory, the frequence of arrival of light pulses is lower than the ticking rate of the upper clocks even though all the clocks go at the same rate. (...) As a result the experimenter at the ceiling of the sky laboratory will see with his own eyes that the floor clock is going at a slower rate than the ceiling clock - even though, as I have stressed, both are going at the same rate. (...) The gravitational red shift does not arise from changes in the intrinsic rates of clocks. It arises from what befalls light signals as they traverse space and time in the presence of gravitation."

http://www.einstein-online.info/spot...t_white_dwarfs
Albert Einstein Institute: "One of the three classical tests for general relativity is the gravitational redshift of light or other forms of electromagnetic radiation. However, in contrast to the other two tests - the gravitational deflection of light and the relativistic perihelion shift -, you do not need general relativity to derive the correct prediction for the gravitational redshift. A combination of Newtonian gravity, a particle theory of light, and the weak equivalence principle (gravitating mass equals inertial mass) suffices. (...) The gravitational redshift was first measured on earth in 1960-65 by Pound, Rebka, and Snider at Harvard University..."

http://courses.physics.illinois.edu/...ctures/l13.pdf
University of Illinois at Urbana-Champaign: "Consider a falling object. ITS SPEED INCREASES AS IT IS FALLING. Hence, if we were to associate a frequency with that object the frequency should increase accordingly as it falls to earth. Because of the equivalence between gravitational and inertial mass, WE SHOULD OBSERVE THE SAME EFFECT FOR LIGHT. So lets shine a light beam from the top of a very tall building. If we can measure the frequency shift as the light beam descends the building, we should be able to discern how gravity affects a falling light beam. This was done by Pound and Rebka in 1960. They shone a light from the top of the Jefferson tower at Harvard and measured the frequency shift. The frequency shift was tiny but in agreement with the theoretical prediction."

Pentcho Valev