-   Hubble (
-   -   DAILY REPORT #3900 (

Lynn Bassford July 20th 05 09:47 PM

HUBBLE SPACE TELESCOPE - Continuing to collect World Class Science


PERIOD COVERED: UT July 12, 2005 (DOY 193)


ACS/HRC 10094

Mid-Ultraviolet Spectral Templates for Old Stellar Systems

We propose a three-year program to provide both observational and
theoretical mid- ultraviolet {2300A -- 3100A} spectral templates for
interpreting the age and metallicity of globular clusters and
elliptical galaxies from spectra of their integrated light. The mid-UV
is the region most directly influenced by stellar age, and is observed
directly in optical and infrared studies of high-redshift quiescent
systems. The reliability of age and metallicity determinations remains
questionable until non-solar metallicities and abundance ratios are
considered, and stars spanning the color-magnitude diagram are
included, as we propose here. With archival HST STIS spectra we have
improved the list of mid-UV atomic line parameters, then calculated
spectra from first principles which match observed spectra of standard
stars up to one- fourth solar metallicity. We will extend both
observations and calculations to stars of solar metallicity and
beyond, and to those in short-lived stages hotter than the
main-sequence turnoff, stars not currently well-represented in
empirical libraries. The necessary line-list improvements will come
from new high-resolution mid-UV spectra of nine field stars. A key
application of the results of this program will be to the old systems
now being discovered as `Extremely Red Objects' at high redshifts.
Reliable age-dating of these places constraints on the epoch when
large structures first formed in the universe.

ACS/HRC 10627

A Snapshot Survey of Post-AGB Objects and Proto-Planetary Nebulae

We propose an ACS/HRC snapshot survey of 50 post-AGB sources, objects
which have evolved from the AGB but may or may not become planetary
nebulae {PNe}. This survey will complement existing HST images of
proto-planetary nebulae {PPNe} and PNe in addressing circumstellar
envelope morphology as a function of: 1} the progenitor star mass; 2}
the chemical composition; and 3} evolutionary stage. We will connect
the observed diversity of nebualar shapes with the main physical and
chemical conditions characterizing post-AGB objects, to identify the
mechanism that breaks the symmetry of AGB mass loss. To our knowledge,
no previous HST projects have been specifically designed to address
this issue. From our database of 360 post-AGB candidates, we have
selected approximately 50 targets, none of which have been or are
being observed with HST, to sample different central star masses,
chemical compositions, and evolutionary stages, uniformly across the
sky. These new data will also provide important constraints to a
quantitative analysis of Spitzer Space Telescope {SST} observations
planned for a similar sample of objects. We will model the HST images
and SST spectra using our axisymmetric dust code 2-Dust, to derive
dust density distributions, pole to equator density ratios, dust shell
masses, inclination angles as well as dust composition.


Coronagraphic search for disks around nearby stars

We will use the coronagraphic and imaging modes of the High Resolution
camera to study of the role of circumstellar disks in planetary system
formation over timescales of ~1-1000 Myr. Our targets comprise pre
Main-Sequence {MS} and MS stars, selected by infrared excess, and
targets selected from SIRTF surveys. Some targets, like Beta Pictoris
have debris disks that have been detected at optical or near-IR
wavelengths, while others have disks inferred from mid-IR or ISO
observations. We will obtain multicolor images of each target's
circumstellar environment for the purpose of {1} detecting and
characterizing disk morphologies over all scales {including warps and
regions of enhanced or depleted density}, and {2} seeking evidence of
embedded planets. Direct and occulted images will be recorded for
studying the disks within 2 arcseconds of these targets; the
coronagraph will be used to image the outer regions of the disks.
Together with existing infrared observations, we will provide
constraints on the sizes, distribution, and composition of dust
grains. Unconfirmed disks will first be imaged in F606W, and if they
exist we may later observe them in F435W and F814W.

ACS/WFC 10496

Decelerating and Dustfree: Efficient Dark Energy Studies with
Supernovae and Clusters

We propose a novel HST approach to obtain a dramatically more useful
"dust free" Type Ia supernovae {SNe Ia} dataset than available with
the previous GOODS searches. Moreover, this approach provides a
strikingly more efficient search-and-follow-up that is primarily
pre-scheduled. The resulting dark energy measurements do not share the
major systematic uncertainty at these redshifts, that of the
extinction correction with a prior. By targeting massive galaxy
clusters at z 1 we obtain a five-times higher efficiency in
detection of Type Ia supernovae in ellipticals, providing a
well-understood host galaxy environment. These same deep cluster
images then also yield fundamental calibrations required for future
weak lensing and Sunyaev-Zel'dovich measurements of dark energy, as
well as an entire program of cluster studies. The data will make
possible a factor of two improvement on supernova constraints on dark
energy time variation, and much larger improvement in systematic
uncertainty. They will provide both a cluster dataset and a SN Ia
dataset that will be a longstanding scientific resource.

FGS 10479

The Distance and Mass of the Neutrino-Luminous White Dwarf PG 0122+200

PG 0122+200 is a pulsating hot white dwarf that is believed to radiate
more energy as neutrinos than it does as photons. We propose to
measure with FGS the trigonometric parallax of PG 0122+200 and thereby
determine its distance, luminosity, and mass. Ongoing investigations
from the ground will infer the neutrino luminosity through its effect
on the pulsation periods, thus testing standard and non-standard
lepton theory, but the stellar mass must first be known. The pulsation
spectrum of PG 0122+200 admits two alternative seismological
interpretations, each implying a different mass, luminosity, and
distance. Measurement of an accurate distance will resolve the matter
once and for all and precisely determine the stellar mass. This
project represents the first test of lepton physics in dense {log rho
= 6} plasma and is relevant to the many areas of stellar physics in
which neutrino interactions are important, including recent theories
intended to solve the solar-neutrino problem.

NIC1/NIC2/NIC3 10380

Cycle 13 NICMOS dark current, shading profile, and read noise
monitoring program

The purpose of this proposal is to monitor the dark current, read
noise, and shading profile for all three NICMOS detectors throughout
the duration of Cycle 13. This proposal is an essentially unchanged
continuation of PID 9993 which cover the duration of Cycle 12.

NIC1/NIC2/NIC3 8793

NICMOS Post-SAA calibration - CR Persistence Part 4

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be
non-standard reference files available to users with a USEAFTER
date/time mark. The keyword 'USEAFTER=date/time' will also be added to
the header of each POST-SAA DARK frame. The keyword must be populated
with the time, in addition to the date, because HST crosses the SAA ~8
times per day so each POST-SAA DARK will need to have the appropriate
time specified, for users to identify the ones they need. Both the raw
and processed images will be archived as POST-SAA DARKSs. Generally we
expect that all NICMOS science/calibration observations started within
50 minutes of leaving an SAA will need such maps to remove the CR
persistence from the science images. Each observation will need its
own CRMAP, as different SAA passages leave different imprints on the
NICMOS detectors.

WFPC2 10360


This calibration proposal is the Cycle 13 routine internal monitor for
WFPC2, to be run weekly to monitor the health of the cameras. A
variety of internal exposures are obtained in order to provide a
monitor of the integrity of the CCD camera electronics in both bays
{gain 7 and gain 15}, a test for quantum efficiency in the CCDs, and a
monitor for possible buildup of contaminants on the CCD windows.


Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be

HSTARS: (None)

#17472-0 - ESTR Reconditioning @ 194/0400z


FGS Gsacq 7 7
FGS Reacq 8 8
FHST Update 9 9


All times are GMT +1. The time now is 12:13 AM.

Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.
Copyright ©2004 - 2006 Space photos on this page are credited to NASA and ESA